Seminar on GeometryFall 2012, ODTÜ, AnkaraTime / Location: Fridays 13:40 / M-215 |
---|
Lecture1 : Bu dönem Jeff Viaclovsky -
Topics in Riemannian Geometry 2007
ders notlarını takip edeceğiz.
Bunlar Einstein Manifold'larına giriş
niteliğinde elemanter geometri dersleri olacak.
İlk hafta eğrilik tansörünün açılımı ve parçalarını işleyeceğiz.
Bu parçaların boyutları ve Weyl tansöründen bahsedeceğiz.
Lecture2 : Kulkarni-Nomizu product. Weyl tansörü.
Lecture3 : Schouten tansörü. Eğrilik tansörünün dik parçalara açılımı.
Harmonic Maps 1: A Riemannian metric g on a smooth manifold M gives rise to the notion of a real-valued harmonic function (M,g) --> R . This generalizes the classical situation when the manifold is a flat Euclidean space. One can generalize further to harmonic maps (M,g) --> (N,h) between any two Riemannian manifolds. Harmonic maps are solutions to an elliptic system of partial differential equations, that are in general nonlinear. Harmonic maps are very important both in classical and modern differential geometry. The best known applications are the geodesics and minimal surfaces of Riemannian manifolds. Other important examples are the holomorphic maps between any two Kähler manifolds, generalizing the classical holomorphic maps between complex vector spaces. In these lecture series we will try to investigate the colourful world of harmonic maps. Everybody interested in differential geometry and/or global analysis or in particular, harmonic maps itself is very welcome. Following link gives a very nice description of the bibliography of the harmonic maps.
Harmonic Maps 3: Riemann yüzeyleri arasındaki harmonik gönderimlerden bahsedeceğiz.
Lecture4 : Eğrilik operatörünün 2-formlara olan etkisi ve 3. boyuttaki özdeğerleri.
Lecture5 : Covaryant türevleri yer değiştirme.
Lecture6 : Laplace ve Hessian operatörlerini yer değiştirmenin bedeli.
Harmonic Maps 4: Daha önce yapılanlar detaylandırılacak, ilk tekrar: Space of maps.
Harmonic Maps 5: Connections in the space of maps.
Önsiper: We will try to explain how one defines the "true" fundamental group in algebraic geometry.
Lecture7: İntegral, Hodge yıldız ve adjointler.
Lecture8: Bochner ve Weitzenböck formülleri 1.
Lecture9:
Bochner ve Weitzenböck formülleri 2.
This page is maintained by Mustafa
Kalafat
Does the page seem familiar...