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Deformations of Scalar-Flat Anti-Self-Dual Metrics

and Quotients of Enriques Surfaces

Mustafa Kalafat

Abstract. In this article, we prove that a quotient of a K3 surface by a free Z2 ⊕Z2

action does not admit any metric of positive scalar curvature. This shows that the

scalar flat anti self-dual metrics (SF-ASD) on this manifold can not be obtained
from a family of metrics for which the scalar curvature changes sign, contrary to the
previously known constructions of this kind of metrics on manifolds of b+ = 0.

1. Introduction

One of the most interesting features of the space of anti-self-dual or self-dual (ASD/SD)
metrics on a manifold is that the scalar curvature can change sign on a connected compo-
nent. That means, one can possibly join two ASD metrics of scalar curvatures of opposite
signs by a 1-parameter family of ASD metrics. However, this is not the case, for example
for the space of Einstein metrics. There, each connected component has a fixed sign for
the scalar curvature.

As a consequence, contrary to the Einstein case, most of the examples of SF-ASD
metrics are constructed by first constructing a family of ASD metrics. Then showing that
there are metrics of positive and negative scalar curvature in the family, and guaranteeing
that there is a scalar-flat member in this family. In the b+ = 0 case actually this is the
only way known to construct such metrics on a 4-manifolds. This paper presents an
example of a SF-ASD Riemannian 4-manifold which is impossible to obtain by this kind
of techniques since it does not have a positive scalar curvature deformation.

§2 introduces the ASD manifolds and the optimal metric problem, §3 reviews the known
examples of SF-ASD metrics constructed by a deformation changing the sign of the scalar
curvature, §4 introduces an action on the K3 surface and furnish the quotient manifold
with a SF-ASD metric, §5 shows that the smooth manifold defined in §4 does not admit
any positive scalar curvature (PSC) or PSC-ASD metric, finally §6 includes some related
examples and remarks.

Key words and phrases. Self-Dual Metrics, Spin Structures, Dirac Operator, Kähler Manifolds, Alge-

braic Surfaces.
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Deformations of SF-ASD Metrics

2. Weyl Curvature Tensor and Optimal Metrics

Let (M, g) be an oriented Riemannian n-manifold. Then by raising the indices, the
Riemann curvature tensor at any point can be viewed as an operator R : Λ2M → Λ2M
hence an element of S2Λ2M . It satisfies the algebraic Bianchi identity hence lies in the
vector space of algebraic curvature tensors. This space is an On-module and has an
orthogonal decomposition into irreducible subspaces for n ≥ 4. Accordingly the Riemann
curvature operator decomposes as:

R = U ⊕ Z ⊕W

where

U =
s

2n(n− 1)
g • g and Z =

1

n− 2

◦

Ric •g

s is the scalar curvature,
◦

Ric= Ric− s
ng is the trace-free Ricci tensor, ”•” is the Kulkarni-

Nomizu product, and W is the Weyl Tensor which is defined to be what is left over from
the first two piece.

Let (M, g) be an oriented Riemannian manifold of dimension n. We have a linear
transformation between the bundles of exterior forms called the Hodge star operator
∗ : Λp → Λn−p. It is the unique vector bundle isomorphism between

(
n
p

)
-dimensional

vector bundles defined by

α ∧ (∗β) = g(α, β)dVg

where α, β ∈ Λp, dVg is the canonical n-form of g satisfying dVg(e1, , en) = 1 for any
oriented orthonormal basis e1, , en. ∗ is defined pointwise but it takes smooth forms
to smooth forms, so induces a linear operator ∗ : Γ(Λp) → Γ(Λn−p) between infinite
dimensional spaces. Notice that ∗1 = dVg, ∗dVg = 1 and ∗2 = (−1)p(n−p)Id∧p . [Bes,
AHS, War]

If n is even, star operates on the middle dimension with ∗2 = (−1)n/2Id∧n/2 . Moreover
it is conformally invariant in dimension n/2: If we rescale the metric by a scalar λ, g̃ = λg,
dVg = λn/2dVg so that their product remains unchanged on n/2-forms since the inner
product on the cotangent vectors multiplied by λ−1.

If n = 2, ∗ acts on Λ1 or TM∗ as well as TM by duality with ∗2 = −IdTM . So it
defines a complex structure on a surface.

The case we are interested is n = 4, i.e. we have a Riemannian 4-Manifold and
∗ : Λ2 → Λ2 with ∗2 = Id∧2 and we have eigenspaces Ex(±1) over each point x denoted
(Λ2

±)x and the bundle Λ2 splits as Λ2 = Λ2
+ ⊕ Λ2

−. We call these bundles, bundle of
self dual , anti self dual two forms respectively. The splitting of two forms turns out
to have a great influence on the geometry of the 4-manifold because of the fact that
the Riemann curvature tensor can be considered as an operator on two forms and so it
also has a corresponding splitting. The decomposition of the space of two forms yields a
decomposition of any operator acting on this space. In particular W± : Λ2

± → Λ2
± called

self-dual and anti-self-dual pieces of the Weyl curvature operator. And we call g to be
self-dual (or anti-self-dual) metric if W−(or W+) vanishes. If one reverses the orientation,
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W− and W+ are interchanged, so a SD manifold can be considered as an ASD manifold
with the reverse orientation.

4-manifolds which support self-dual metrics are abundant. In particular [Taubes] shows
that for any smooth 4-manifold, the blow up M#kCP2 admits an ASD metric for suf-
ficiently large k. Besides, there is even a connected sum theorem : under reasonable
circumstances, Donaldson and Friedman proves in their seminal paper [DonFried] that
the connected sums of SD manifolds are also SD. It is a pity that these deep and beautiful
results of Taubes, Donaldson and Friedman are not as well known as their other results
among the general geometry-topology community. Even though the result of Donaldson
and Friedman is very strong, it has a small drawback. It does not tell anything about
the curvature of the connected sum metric. To remedy this situation, the author proved
that one can generalize their construction to the positive scalar curvature case, i.e. under
the same conditions of [DonFried] the connected sums of 4-manifolds that admit PSC-SD
metrics again admit PSC-SD metrics. See [Kalafat] for details.

Finally, some motivation on why to study SD/ASD metrics is in order. SF-ASD metrics
are solutions to the optimal metric problem. Optimal metric problem is a struggle to find a
“best” metric for a smooth manifold. Historically, the geometers are interested in constant
sectional curvature spaces. As soon as these spaces are classified, there is a question of
what to do with the manifolds that do not admit any constant sectional curvature. Some
of them are metrized by Einstein metrics, which have constant Ricci curvature. However
there are still manifolds which do not admit any Einstein metrics. At this point SF-ASD
metrics come into the picture. More precisely :

Definition 2.1 ([LeOM]). A Riemannian metric on a smooth 4-manifold M is called an
optimal metric if it is the absolute minimum of the L2 norm of the Riemann Curvature
tensor on the space of metrics

K(g) =

∫

M

|Rg|
2dVg.

Using the orthogonal decomposition it is equal to

K(g) =

∫

M

s2

24
+

|
◦

Ric |2

2
+ |W |2 dVg .

On the other hand, the generalized Gauss-Bonnet Theorem and the Hirzebruch Signa-
ture Theorem express the Euler characteristic χ and signature τ respectively as

χ(M) =
1

8π2

∫

M

s2

24
+ |W |2 −

|
◦

Ric |2

2
dVg
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τ(M) =
1

12π2

∫

M

|W+|
2 − |W−|

2 dVg .

Combining the two in K gives the following expression of K

K(g) = −8π2(χ+ 3τ)(M) + 2

∫

M

s2

24
+ 2|W+|

2 dVg .

This yields

Proposition 2.1 ([LeOM]). Let M be a smooth compact oriented 4-manifold. If M
admits a SF-ASD metric then this metric is optimal. In this case all other optimal
metrics are SF-ASD, too.

For further information on the optimal metric problem, we suggest the excellent survey
article [LeOM] by C. LeBrun.

3. Constructions of SF-ASD Metrics

Here we review some of the constructions for SF-ASD metrics on 4-manifolds. We
begin with

Theorem 3.1 (LeBrun[LeOM]). For all integers k ≥ 6, the manifold

kCP2 = CP2# · · ·#CP2︸ ︷︷ ︸
k−many

admits a 1-parameter family of real analytic ASD conformal metrics [gt] for t ∈ [0, 1] such
that [g0] contains a metric of s > 0 on the other hand [g1] contains a metric of s < 0.

Now we are going to state the strong maximum principle of Hopf’s. Before, we have

a definition. Consider the differential operator Lc =
∑n

i,j=1 a
ij(x1..xn) ∂2

∂xi∂xj
arranged

so that aij = aji. It is called elliptic ([PrWe]p56 ) at a point x = (x1..xn) if there is a
positive quantity µ(x) such that

n∑

i,j=1

aij(x)ξiξj ≥ µ(x)
n∑

i=1

ξi
2

for all n-tuples of real numbers (ξ1..ξn). The operator is said to be uniformly elliptic in a
domain Ω if the inequality holds for each point of Ω and if there is a positive constant µ0

such that µ(x) ≥ µ0 for all x in Ω. Ellipticity of a more general second order operator is
defined via its second order term. In the matrix language, the ellipticity condition asserts
that the symmetric matrix [aij ] is positive definite at each point x.

Lemma 3.2 (Hopf’s strong maximum principle , [PrWe]p64). Let u satisfy the differential
inequality

(Lc + h)u ≥ 0 with h ≤ 0
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where Lc is uniformly elliptic in Ω and coefficients of Lc and h bounded. If u attains a
nonnegative maximum at an interior point of Ω, then u is constant.

Corollary 3.3 (LeBrun[LeOM]). For all integers k ≥ 6, the connected sum kCP2 admits
scalar-flat anti-self-dual (SF-ASD) metrics.1

Proof. Let ht ∈ [gt] be a smooth family of metrics representing the smooth family of
conformal classes [gt] constructed in [LeOM]. We know that the smallest eigenvalue λt

of the Yamabe Laplacian (∆ + s/6) of the metric ht exists, and is a continuous function
of t. It measures the sign of the conformally equivalent constant scalar curvature metric
[LP].

But the theorem(3.1) tells us that λ0 and λ1 has opposite signs. Then there is some
c ∈ [0, 1] for which λc = 0. Let u be the eigenfunction corresponding to the eigenvalue 0,
for the Yamabe Laplacian of hc , i.e. (∆ + s/6)u = 0. Rescale it by a constant so that it
has unit integral.

Rescale the metric hc so that it has constant scalar curvature [LP]. We have three cases
for the scalar curvature, positive, zero or negative. If it is zero then we are done. Suppose
sc = s > 0. Since u is a continuous function on the compact manifold, it has a minimum,
say atm. Choose the normal coordinates around there, so that ∆u(m) = −

∑4
k=1 ∂

2u(m).
Second partial derivatives are greater than or equal to zero, ∆u(m) ≤ 0 so u(m) =
− 6

s∆u(m) ≥ 0. Assume u(m) = 0. Then the maximum of −u is attained and it is
nonnegative with (−∆ − s/6)(−u) = 0 ≥ 0. So the strong maximum principle (3.2) is
applicable and −u ≡ 0, which is not an eigenfunction. So u is a positive function. For a
conformally equivalent metric g̃, the new scalar curvature s̃ is computed to be [Bes]

s̃ = 6u−3(∆ + s/6)u

in terms of s. Thus g̃ = u2hc is a scalar-flat anti-self-dual metric on kCP2 for any k ≥ 6.
The negative scalar curvature case is treated similarly. �

Another construction tells us

Theorem 3.4 ([Kim]). There exist a continuous family of self-dual metrics on a con-
nected component of the moduli space of self-dual metrics on

l(S3 × S1)#mCP2 for any m ≥ 1 and for some l ≥ 2

which changes the sign of the scalar curvature.

4. SF-ASD Metric on the Quotient of Enriques Surface

In this section we are going to describe what we mean byK3/Z2⊕Z2, and the scalar-flat
anti-self-dual (SF-ASD) metric on it.

1Quite recently, LeBrun and Maskit announced that they have extended this result to the case k = 5
with similar techniques, which is the minimal number for these type of connected sums according to

[LeSD].
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Let A and B be real 3 × 3 matrices. For x, y ∈ C
3, consider the algebraic variety

V2,2,2 ⊂ CP5 given by the equations
∑

j

Aj
ix

2
j +Bj

i y
2
j = 0 , i = 1, 2, 3

or more precisely,

A1
1x

2
1 +A2

1x
2
2 +A3

1x
2
3 +B1

1y
2
1 +B2

1y
2
2 +B3

1y
2
3 = 0

A1
2x

2
1 +A2

2x
2
2 +A3

2x
2
3 +B1

2y
2
1 +B2

2y
2
2 +B3

2y
2
3 = 0

A1
3x

2
1 +A2

3x
2
2 +A3

3x
2
3 +B1

3y
2
1 +B2

3y
2
2 +B3

3y
2
3 = 0

For generic A and B, this is a complete intersection of three nonsingular quadric hyper-
surfaces. By the Lefschetz hyperplane theorem, it is simply connected, and

KV2
= KP5 ⊗ [V P

5

2 ] = O(−6) ⊗O(1)⊗2 = O(−4)

since [V2]h = 2[H]h and taking Poincare duals, similarly

KV2,2
= KV2

⊗ [V P
5

2,2] = O(−4) ⊗O(2) = O(−2)

KV2,2,2
= KV2,2

⊗ [V P
5

2,2,2] = O(−2) ⊗O(2) = O

finally. So the canonical bundle is trivial. V is a K3 Surface. We define the commuting
involutions σ± by

σ+(x, y) = (x,−y) and σ−(x, y) = (x̄, ȳ)

and since we arranged A and B to be real, σ± both act on V .
At a fixed point of σ+ on V , we have yj = −yj = 0, so

∑
j A

j
ix

2
j = 0. So if we take

an invertible matrix A, these conditions are only satisfied for xj = yj = 0 which does not
correspond to a point, so σ+ is free and holomorphic. At a fixed point of σ− on V , xj ’s

and yj ’s are all real. If Aj
1, B

j
1 > 0 for all j then

∑
j A

j
ix

2
j +Bj

i y
2
j = 0 forces xj = yj = 0

making σ− free. At a fixed point σ−σ+ on V , xj = x̄j and yj = −ȳj , so xj ’s are real and

yj ’s are purely imaginary. Then y2
j is a negative real number. So if we choose Aj

2 > 0 and

Bj
2 < 0, this forces xj = yj = 0, again we obtain a free action for σ−σ+. Thus choosing

A and B within these circumstances σ± generate a free Z2 ⊕ Z2 action and we define
K3/Z2 ⊕ Z2 to be the quotient of K3 by this free action. We have

χ =
4∑

k=0

(−1)kbk = 2 − 2b1 + b2 = 2 + (2b+ − τ) hence b+ = (χ+ τ − 2)/2

so, b+(K3/Z2 ⊕ Z2) = (24/4 − 16/4 − 2)/2 = 0, a special feature of this manifold.
Next we are going to furnish this quotient manifold with a Riemannian metric. For that

purpose, there is a crucial observation [HitEin] that, for any free involution on K3, there
exists a complex structure on K3 making this involution holomorphic, so the quotient is
a complex manifold. We begin by stating the
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Theorem 4.1 (Calabi-Yau[Ca, Yau, GHJ, Joyce]). Let (M,ω) be a compact Kähler
n-manifold. Let ρ be a (1, 1)-form belonging to the class 2πc1(M) so that it is closed.
Then, there exists a unique Kähler metric with form ω′ which is in the same class as in
ω, whose Ricci form is ρ.

Intuitively, one can slide the Kähler form ω in its cohomology class and obtain any
desired reasonable Ricci form ρ.

Remark 4.2. Since c1(K3) = 0 in our case, taking ρ ≡ 0 gives us a Ricci-Flat(RF)
metric on the (K3, ω) surface, the Calabi-Yau metric. This metric is hyperkählerian
because of the following reason: The holonomy group of Kähler manifolds are a subgroup
of U2. However, Ricci-flatness reduces the holonomy since harmonic forms are parallel
because of the Weitzenböck Formula for the Hodge/modern Laplacian on 2-forms (5.6).
Scalar flatness and non-triviality of b+ is to be checked. b1(K3) = 0 implies b+(K3) =
(24 − 16 − 2)/2 = 3, which is nonzero. Actually b+ is nontrivial for any Kähler surface
since the Kähler form is harmonic and self-dual. Harmonic parallel forms are kept fixed
by the holonomy group, a fact that imposes a reduction from U2 to SU2 which is the next
possible option and isomorphic to Sp1 in this dimension, hence the Calabi-Yau metric is
hyperkähler. Alternatively one can see that the holomorphic forms are also parallel by a
similar argument, another reason to reduce the holonomy.

So we have at least three almost complex structures I, J,K, parallel with respect to
the Riemannian connection. By duality we regard these as three linearly independent
self-dual 2-forms, parallelizing Λ+

2 . So any parallel Λ+
2 form on K3 defines a complex

structure after normalizing. In other words aI + bJ + cK defines a complex structure for
the constants satisfying a2 + b2 + c2 = 1, i.e the normalized linear combination. On the
other hand

b1(K3/Z2) = b1(K3) = 0 , b+(K3/Z2) = (12 − 8 − 2)/2 = 1.

Since the pullback of harmonic forms stay harmonic, the generating harmonic 2-form on
K3/Z2 comes from the universal cover, so is fixed by the Z2 action. It is also a parallel
self-dual form so its normalization is then a complex structure left fixed by Z2. So the
quotient is a complex surface with b1 = 0 and 2c1 = 0 implying that it is an Enriques
Surface.

So we saw that any involution or Z2-action can be made holomorphic by choosing the
appropriate complex structure on K3. In particular by changing the complex structure,
σ− becomes holomorphic, too and then both K3/Z±

2 are complex manifolds, i.e. Enriques
Surfaces, for Z

±
2 = 〈σ±〉.

Remark 4.3. Even though we managed to make σ+ and σ− into holomorphic actions by
modifying the complex structure, it is impossible to provide a complex structure according
to which they are holomorphic at the same time. The reason is that, in such a situation
the quotient K3/Z2 ⊕ Z2 would be a complex manifold. On the other hand the Noether’s
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Formula [Beauville]

χ(OS) =
1

12
(K2

S + χ(S)) =
1

12
(c21 + c2)[S]

holds for any compact complex surface [BPV] as a consequence of the Hirzebruch-Riemann-
Roch Theorem. It produces a non-integer holomorphic Euler characteristic 1

12
24
4 = 1

2 .

Now consider another metric on K3 : the restriction of the Fubini-Study metric on
CP

5 obtained from the Kähler form

ωFS =
i

2π
∂∂̄ log |(x1, x2, x3, y1, y2, y3)|

2

We also denote the restriction metric by gFS . It is clear that σ± leave this form invariant,
hence they are isometries of gFS . This is not the metric we are seeking for. This metric has
all sectional curvatures lying in the interval [1, 4] and is actually Einstein, i.e. Ric = 6g
with constant positive scalar curvature equal to 2 [Pet]p84. Let gRF be the Ricci-Flat
Yau metric (4.1) taking ρ ≡ 0 with Kähler form cohomologous to ωFS . We will show that
this metric is invariant under σ± and projects down to a metric on K3/Z2 ⊕ Z2. Scalar
flatness and being ASD are equivalent notions for Kähler metrics [LeSD], and the local
structure does not change under isometric quotients which makes the quotient SF-ASD.

Since σ+ is holomorphic, the pullback form σ+∗ωRF is Kähler and the equalities

[σ+∗ωRF ] = σ+∗[ωRF ] = σ+∗[ωFS ] = [σ+∗ωFS ] = [ωFS ]

show that it is cohomologous to the Fubini-Study form. Ricci curvature is preserved
and is zero, hence by Calabi uniqueness (4.1) we get σ+∗gRF = gRF . Dealing with
the anti-holomorphic involution needs a little more care. Think σ− : K3 → K3 as a
diffeomorphism. The pullback of a Kähler metric is Kähler with respect to the pullback
complex structure. The anti-holomorphicity relation relates the two complex structures
by σ−

∗ J1 = −J2σ
−
∗ . The pullback Kähler form ω̃n = ωσ−∗gF S

= −σ−∗ωRF since

ω̃n(u, v) = σ−∗gRF (J1u, v) = gRF (σ−
∗ J1u, σ

−
∗ v) = gRF (−J2σ

−
∗ u, σ

−
∗ v)

= −ωRF (σ−
∗ u, σ

−
∗ v) = −σ−∗ωRF (u, v),

and hence,

[ω̃n] = [−σ−∗ωRF ] = −σ−∗[ωRF ] = −σ−∗[ωFS ] = −[σ−∗ωFS ] = −[ωFS ].

But this is the form of σ−∗gFS with respect to the pullback complex structure which is
the conjugate(negative) of the original one. Looking from the real point of view, once we
have a Kähler metric g, it has a Kähler form corresponding to each supported complex
structure on the manifold. Once the complex structure is chosen, the form is obtained by
lowering an index

ωab = ω(∂a, ∂b) = g(J∂a, ∂b) = g(J c
a ∂c, ∂b) = J c

a g(∂c, ∂b) = J c
a gcb = Jab.

So, the form and the complex structure are equivalent from the tensorial point of view. If
we conjugate(negate) the complex structure, we should replace the form with its negative.
Returning to our case, ω̃n is the form corresponding to the pullback, hence to the conjugate
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complex structure. We take its negative to obtain the one corresponding to the original
complex structure. So the corresponding form is going to be ω̃ = −−ωFS which is ωFS ,
and again the Calabi uniqueness (4.1) implies σ−∗gRF = gRF .

Remark 4.4. There is an alternative argument in [McI]p894 which appears to have a
gap: “Fubini-Study metric projects down to the metrics g±FS on K3/Z±

2 . Let h± be the

Calabi-Yau metric(4.1) on K3/Z±
2 with Kähler form cohomologous to that of g±FS . To

remedy the ambiguity in the negative side, keep in mind that, σ− fixes the metric and
the form on K3, though the quotient is not a Kähler manifold initially since it is not
a complex manifold, it is locally Kähler. We arrange the complex structure of K3 to
provide a complex structure to the form, so the quotient manifold is Kähler. Now we
have two Kähler metrics on the quotient (for different complex structures) but we do
not know much about their curvatures, and want to make it Ricci-Flat, so we use the
Calabi-Yau argument. Since c1(K3/Z±

2 ) = 0 with real coefficients, we pass to the Calabi-
Yau metric for ρ ≡ 0. π± denoting the quotient maps, the pullback metrics π±∗h± are
both Ricci-Flat-Kähler(RFK) metrics on K3 with Kähler forms cohomologous to that
of gFS . Their Ricci forms are both zero. By the uniqueness(4.1) of the Yau metric we
have π+∗h+ = π−∗h−. Hence this is a Ricci-Flat Kähler metric on K3 on which both
σ± act isometrically. This metric therefore projects down to a Ricci-Flat metric on our
manifold K3/Z2 ⊕ Z2.” The problem is that the pullback metrics π±∗h± are Kähler
metrics with cohomologous Kähler forms, however they are Kählerian with respect to
different complex structures. So the Calabi uniqueness (4.1) can not be applied directly.2

5. Weitzenböck Formulas

Now we are going to show that the smooth manifold K3/Z2 ⊕ Z2 does not admit any
positive scalar curvature metric. For that purpose we state the Weitzenböck Formula for
the Dirac Operator on spin manifolds. Before that we introduce some notation together
with some ingredients of the formula.

For any vector bundle E over a Riemannian Manifold M , the Levi-Civita connection
is going to be the linear map we denote by ∇ : Γ(E) → Γ(Hom(TM,E)). Then we get
the adjoint ∇∗ : Γ(Hom(TM,E)) → Γ(E) defined implicitly by

∫

M

〈∇∗S, s〉dV =

∫

M

〈S,∇s〉dV

and we define the connection Laplacian of a section s ∈ Γ(E) by their composition ∇∗∇s.
Notice that the harmonic sections are parallel for this operator. Using the metric, we can
express its action as :

Proposition 5.1 ([Pet]p179). Let (M, g) be an oriented Riemannian manifold, E →M
a vector bundle with an inner product and compatible connection. Then

∇∗∇s = −tr∇2s

2Thanks to the second referee for pointing out this delicate issue.
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for all compactly supported sections of E.

Proof. First we need to mention the second covariant derivatives and then the integral of
the divergence. We set

∇2K(X,Y ) = (∇∇K)(X,Y ) = (∇X∇K)(Y ).

Then using the fact that ∇X is a derivation commuting with every contraction: [KN1]p124

∇X∇Y K = ∇XC(Y ⊗∇K) = C∇X(Y ⊗∇K)

= C(∇XY ⊗∇K + Y ⊗∇X∇K)

= ∇∇XY K + (∇X∇K)(Y )

= ∇∇XY K + ∇2K(X,Y )

hence ∇2K(X,Y ) = ∇X∇Y K − ∇∇XY K for any tensor K. That is how the second
covariant derivative is defined . Higher covariant derivatives are defined inductively.

For the divergence, remember that

(divX)dVg = LXdVg,

which is taken as a definition sometimes[KN1]p281. After combining this with the Car-
tan’s Formula: LXdV = diXdV + iXd(dV ) = diXdV ; Stokes’ Theorem yields that∫

M
(divX)dV =

∫
M

LXdV =
∫

M
d(iXdV ) =

∫
∂M

iXdV = 0 for a compact manifold
without boundary. This is actually valid even for a noncompact manifold together with
a compactly supported vector field.

Now take an open set on M with an orthonormal basis {Ei}
n
i=1. Let s1 and s2 be

two sections of E compactly supported on the open set. We reduce the left-hand side via
multiplying by s2 as follows:

(∇∗∇s1, s2)L2 =

∫

M

〈∇∗∇s1, s2〉dV =

∫

M

〈∇s1,∇s2〉dV =

∫

M

tr((∇s1)
∗∇s2)dV

=

n∑

i=1

∫

M

〈(∇s1)
∗∇s2(Ei), Ei〉dV

=
∑ ∫

M

〈(∇s1)
∗∇Ei

s2, Ei〉dV

=
∑ ∫

M

〈∇Ei
s2,∇s1(Ei)〉dV

=
∑ ∫

M

〈∇Ei
s1,∇Ei

s2〉dV.

Define a vector field X by g(X,Y ) = 〈∇Y s1, s2〉. Divergence of this vector field is

divX = −d∗(X♭) = tr∇X =
∑n

i=1〈∇Ei
X,Ei〉 =

∑
(Ei〈X,Ei〉 − 〈X,∇Ei

Ei〉)

=
∑

(Ei〈∇Ei
s1, s2〉 − 〈∇∇Ei

Ei
s1, s2〉).
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We know that its integral is zero, so our expression continues to evolve as

∑ ∫

M

〈∇Ei
s1,∇Ei

s2〉dV −

∫

M

(divX)dV

=
∑ ∫

M

〈∇Ei
s1,∇Ei

s2〉dV −
∑ ∫

M

(Ei〈∇Ei
s1, s2〉 − 〈∇∇Ei

Ei
s1, s2〉)dV

=
∑ ∫

M

(−〈∇Ei
∇Ei

s1, s2〉 + 〈∇∇Ei
Ei
s1, s2〉)dV

=
∑ ∫

M

〈−∇2s1(Ei, Ei), s2〉dV

= −

∫

M

〈
∑

〈∇2s1(Ei), Ei〉, s2〉dV

=

∫

M

〈−tr∇2s1, s2〉dV

= (−tr∇2s1, s2)L2 .

So we established that ∇∗∇s1 = −tr∇2s1 for compactly supported sections in an open
set.

�

Theorem 5.2 (Atiyah-Singer Index Theorem[LM]p256,[MoSW]p47). Let M be a compact
spin manifold of dimension n = 2m. Then, the index of the Dirac operator is given by

ind(/D
+
) = Â(M) = Â(M)[M ].

More generally, if E is any complex vector bundle over M , the index of
/D

+
E : Γ(S± ⊗ E) → Γ(S∓ ⊗E) is given by

ind(/D
+
E) = {ch(E) · Â(M)}[M ].

For n = 4, Â(M) = 1 − p1/24 and the first formula reduces to

ind(/D
+
) = Â(M) =

∫

M

−
p1(M)

24
= −

τ(M)

8

by the Hirzebruch Signature Theorem.

Let us explain the ingredients beginning with the cohomology class Â(M). Consider
the power series of the following function[Fr]p108 :

t/2

sinh t/2
=

t

et/2 − e−t/2
= 1 +A2t

2 +A4t
4 + . . .

where we compute the coefficients as

A2 = −
1

24
, A4 =

7

10 · 24 · 24
=

7

5760
.
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Consider the Pontrjagin classes p1...pk of M4k. Represent these as the elementary sym-
metric functions in the squares of the formal variables x1 · · ·xk:

x2
1 + · · · + x2

k = p1 , · · · , x
2
1x

2
2 · · ·x

2
k = pk

Then
∏k

i=1
xi

exi/2−e−xi/2
is a symmetric power series in the variables x2

1 · · ·x
2
k, hence defines

a polynomial in the Pontrjagin classes. We call this polynomial Â(M)

Â(M) =

k∏

i=1

xi/2

sinhxi/2
.

In lower dimensions we have

Â(M4) = 1 −
1

24
p1 , Â(M8) = 1 −

1

24
p1 +

7

5760
p2
1 −

1

1740
p2.

If the manifold has dimension n = 4k+2, again it has k Pontrjagin classes, and we define
the polynomial Â(M4k+2) by the same formulas.

Secondly, we know that /D
+

: Γ(S+) → Γ(S−) is an elliptic operator, so its kernel is
finite dimensional and its image is a closed subspace of finite codimension. The index
of an elliptic operator is defined to be dim(kernel) − dim(cokernel). Actually in our

case /D
+

and /D
−

are formal adjoints of each other: ( /D+ψ, η)L2 = (ψ, /D−η)L2 for ψ, η
compactly supported sections [LM]p114 , [MoSW]p42. Consequently the index becomes

dim(ker) /D
+
) − dim(ker /D

−
).

This index is computed from the symbol in the following way. Consider the pullback
of S± to the cotangent bundle T ∗M . The symbol induces a bundle isomorphism between
these bundles over the complement of the zero section of T ∗M . In this way the symbol
provides an element in the relative K-theory of (T ∗M,T ∗M −M). The Atiyah-Singer
Index Theorem computes the index from this element in the relative K-theory. In the
case of the Dirac operator the index is Â(M), the so-called A-hat genus of M .

Now we are ready to state our main tool

Theorem 5.3 (Weitzenböck Formula[Pet]p183,[Bes]p55). On a spin Riemannian man-
ifold, consider the Dirac operator /D : Γ(S±) → Γ(S∓). The Dirac Laplacian can be
expressed in terms of the connection/rough Laplacian as

/D2 = ∇∗∇ +
s

4

where ∇ is the Riemannian connection.

Finally we state and prove our main result :

Theorem 5.4. The smooth manifold K3/Z2 ⊕ Z2 does not admit any metric of positive
scalar curvature(PSC).
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Proof. If K3/Z2 ⊕ Z2 admits a metric of PSC then K3 is also going to admit such a
metric because one pulls back the metric of the quotient, and obtain a locally identical
metric on which the PSC survives.

So we are going to show that the K3 surface does not admit any metric of PSC. First
of all the canonical bundle of K3 is trivial so that c1(K3) = 0 = w2(K3) implying that
it is a spin manifold.
By the Atiyah-Singer Index Theorem (5.2),

ind( /D+) = Â(M)[M ] = −
τ(M)

8
= 2

for the K3 Surface. Since it is equal to dim(ker) − dim(coker), this implies that the
dim(ker /D+) ≥ 2.

Let ψ ∈ ker /D+ ⊂ Γ(S+) and consider its image (ψ, 0) in Γ(S+⊕S−). Then /D2(ψ, 0) =
0 since /D = /D+⊕ /D−. Abusing the notation as ψ = (ψ, 0) the spin Weitzenböck Formula
(5.3) implies

0 = ∇∗∇ψ +
s

4
ψ.

Taking the inner product with ψ and integrating over the manifold yields

0 = (∇∗∇ψ,ψ)L2 + (
s

4
ψ,ψ)L2 = (∇ψ,∇ψ)L2 +

s

4
(ψ,ψ)L2 =

∫

M

(|∇ψ|2 +
s

4
|ψ|2)dV

and s > 0 implies that |∇ψ| = |ψ| = 0 everywhere, hence ψ ≡ 0. So ker /D+ = 0, which is
not the case.
Notice that s ≥ 0 and s(p) > 0 for some point is also enough for the conclusion because
then ψ would be parallel and zero at some point implies ψ is zero everywhere �

Remark 5.5. In the above proof, while taking ψ ∈ ker /D+ some confusion may arise
if ker /D+ ⊂ Γ(S+) is not specified. A reader might think that /D+ acts on Γ(S+ ⊕ S−)
and ψ is equal to something like (ψ, η) for some nonzero η, so that /D2ψ = /D+ /D−ψ.

Alternatively, we could use the Weitzenböck Formula for the Hodge/modern Laplacian
to show that there are no PSC anti-self-dual(ASD) metrics on K3/Z2 ⊕ Z2. This is a
weaker conclusion though sufficient for our purposes

Theorem 5.6 (Weitzenböck Formula 2[LeOM]). On a Riemannian manifold, we can
express the Hodge/modern Laplacian in terms of the connection/rough Laplacian as

(d+ d∗)2 = ∇∗∇− 2W +
s

3

where ∇ is the Riemannian connection and W is the Weyl curvature tensor.

Theorem 5.7. The smooth manifold K3/Z2 ⊕ Z2 does not admit any anti-self-dual(ASD)
metric of positive scalar curvature(PSC).

Proof. Again we are going to show this only for K3 as in (5.4). Suppose we have a metric
of positive scalar curvature.
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Anti-self-duality reduces our Weitzenbock Formula (5.6) to the form

(d+ d∗)2 = ∇∗∇− 2W− +
s

3

because W = W− or W+ = 0.
We have already explained in (4.2) that b+2 of the K3 surface is nonzero. So take a

nontrivial harmonic self-dual 2-form ϕ. W− : Γ(Λ−) → Γ(Λ−) only acts on anti-self-dual
forms, so it takes ϕ to zero. Applying the formula,

0 = ∇∗∇ϕ+
s

3
ϕ

and taking the inner product with ϕ and integrating over the manifold yields similarly

0 = (∇∗∇ϕ,ϕ)L2 + (
s

3
ϕ,ϕ)L2 = (∇ϕ,∇ϕ)L2 +

s

3
(ϕ,ϕ)L2 =

∫

M

(|∇ϕ|2 +
s

3
|ϕ|2)dV

and s > 0 implies that |∇ϕ| = |ϕ| = 0 everywhere, hence ϕ ≡ 0, a contradiction. �

6. Other Examples

In this section, we will go through some examples. We begin with the case b+ = 1.

Theorem 6.1 ([KimLePon],[RS-SFK]). For all integers k ≥ 10, the connected sum
CP2#kCP2 admits scalar-flat-Kähler(SFK) metrics.3

The case k ≥ 14 is achieved in [KimLePon]. They start with blow ups of CP1 × Σ2

the cartesian product of rational curve and genus-2 curve, which already have a SFK
metric via the hyperbolic ansatz of [LeExp]. After applying an isometric involution, they
get a SFK orbifold, which has isolated singularities modelled on C

2/Z2. Replacing these
singular models with smooth ones, they obtain the desired metric.

For the case k ≥ 10, Rollin and Singer first construct a related SFK orbifold with iso-
lated and cyclic singularities of which the algebra a0 of non-parallel holomorphic vector
fields is zero. This is done by an argument analogous to that of [Burns-Bart]. The target
manifold is the minimal resolution of this orbifold. To obtain the target metric, they glue
some suitable local models of SFK metrics to the orbifold. These models are asymptoti-
cally locally Euclidean(ALE) scalar flat Kähler metrics constructed in [Cal-Sing].

When a metric is Kähler, from the decomposition of the Riemann Curvature operator,
scalar-flatness turns out to be equivalent to being anti-self-dual. So these metrics are
SF-ASD.

Since these manifolds have b+ 6= 0 Weitzenböck Formulas apply as in section §5, so
automatically the scalar curvature can not change sign. These examples show why the
case b+ = 0 we focussed on, is interesting.

A second type of example is 4

3It is a curious fact that k = 10 is the minimal number for these type of metrics(SF-ASD) on

CP2#kCP2, known by [LeSD] long before these constructions made. See [LeOM] for a survey.
4Thanks to the first referee for pointing out this example and the remark.

119



KALAFAT

Example 6.2. Let Σg be the genus-g(> 1) surface with Kähler metric of constant curvature
κ = −1, and S2 be the 2-sphere with the round κ = +1 metric. Consider the product
metric on S2 ×Σg which is Kähler with zero scalar curvature. So this metric is anti-self-
dual. Then we have fixed point free, orientation reversing, isometric involutions of both
surfaces obtained by antipodal maps. Combination of these involutions yield an isometric
involution on the product and the metric pushes down to a metric on

(S2 × Σg)/Z2 = RP 2 × (RP 2# · · ·#RP 2

︸ ︷︷ ︸
(g+1)−many

)

which is SF-ASD as these properties are preserved under isometry. This is an example
with all the key properties (b+ = 0)where the metric is completely explicit. Note that
this manifold is non-orientable.

One has to be careful about the involution on Σg though. There are many hyperbolic
metrics on Σg which do not have an isometric involution satisfying our conditions. In-
volution must be conformal. One way to achieve this is as follows. We take a conformal
structure on the (g + 1)RP 2, and pull this back to its orientable double cover Σg. By
the uniformization theorem of Riemann Surfaces, there is a unique hyperbolic(κ = −1)
metric of Σg in this conformal class. Since this metric is unique in its conformal class, it is
automatically invariant under the involution and pushes down to a hyperbolic metric on
(g+ 1)RP 2. It is known that the moduli space of hyperbolic metrics on Σg is 6g− 6 real
dimensional, on the other hand 3g− 3 real dimensional on (g+1)RP 2. So it is appearent
that there are many hyperbolic metrics on Σg which are not coming from the quotient.
So that they do not have the isometric involution of the kind we use.

Another way to construct this involution can be to begin with a surface in R
3 which is

symmetric about the origin, e.g. add symmetric handles to a sphere or a torus about the
origin. Then take the conformal structure induced from Euclidean R

3. There is a unique
hyperbolic metric that induces this conformal structure, so proceed as before.

Remark 6.3. The other side of the story discussed here is that we have ASD, conformally
flat deformations to negative scalar curvature metrics e.g. on M = Σg×S

2. It is obtained
by deforming

ρ : π1(M) −→ SL(2,H),

the representation of the fundamental group in SL(2,H). This is the group of conformal
transformations of S4. It contains the isometry group SL(2,R) due to the fact that H2×S2

is conformally flat and conformally diffeomorphic to S4 − S1. This is the universal cover
of Σg × S2, and its fundamental group acts by conformal transformations in SL(2,R) ⊂
SL(2,H). π1(M) = π1(Σg) is generated by 2g elements {a1, b1 · · · ag, bg} and these
are subject to the single relation

∏
[aj , bj ] = 1 the product of the commutators. So a

representation in SL(2,H) corresponds to a choice of 2g elements and a relation. Since
this Lie group is 15 dimensional and we have to subtract the change of basis conjugation
and the relations , this kind of representations depend on 15 × 2g − 15 × 1 − 15 × 1 =
30g − 30 parameters. On the other hand, a twisted product metric on Σg × S2 provides
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a representation in SL(2,R)× SO(3), which is a 3 + 3 = 6 dimensional Lie group. So we
have 6× 2g− 6× 1− 6× 1 = 12g− 12 parameters for this representation. This difference
means that the generic conformally flat structure on M does not come from a twisted
product metric. We refer [Pon] for further details.

Using the Weitzenböck Formula (5.6), LeBrun [LeSD] shows that a conformally flat
metric on M of zero scalar curvature must be Kähler with respect to both orientations,
and by a holonomy argument he further shows that the metric is of twisted product type.5

Similar parameter counts are valid for M/Z2 and this shows that the generic confor-
mally flat metric on this manifold has negative Yamabe constant.

Also, by further investigation, it might be possible to get examples which are doubly
covered by e.g. the simply connected examples of [KimLePon].
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