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Abstract

We show that if a compact, oriented 4-manifold admits a coassociative(∗φ0)-
free immersion into R7 then its Euler characteristic χM and signature τM van-
ish. Moreover, in the spin case the Gauss map is contractible, so that the im-
mersed manifold is parallelizable. The proof makes use of homotopy theory
in particular obstruction theory. As a further application we prove a non-
existence result for some infinite families of 4-manifolds that can not be ad-
dressed previously. We give concrete examples of parallelizable 4-manifolds
with complicated non-simply-connected topology.

1 Introduction

Let (M, g) be a Riemannian n-manifold. If we take a point p in M, a k-dimensional
vector subspace V < TpM equipped with an orientation is called an oriented tan-
gent k-plane of M. In this case the restricted metric g|V and the orientation gives
a natural k-form, the volume form volV on V. A k-form ϕ on M is called a cal-
ibration if it is closed and ϕ|V ≤ volV for any oriented k-plane V. In general
ϕ|V = α · volV for some α ∈ R since they are both top forms on the vector space
V. The calibration condition is equivalent to α ≤ 1. Under these assumptions if N
is an oriented k-dimensional submanifold of M, then the tangent spaces of N are
automatically oriented tangent k-planes and we say that N is a calibrated submani-
fold or ϕ-submanifold of M if N has maximal tangent spaces i.e. ϕ|Tp N = volTpN for
all p ∈ N. The function α ≡ 1 constant on N in this case. Calibrated manifolds
are introduced in [HL82], for a survey see also [Joy00]. On the Euclidean space
R7, consider the coassociative form which is the 4-form

∗φ0 = dx1234 − dx12−34 ∧ dx67 − dx13−42 ∧ dx75 − dx14−23 ∧ dx56.

This is actually an example of a calibration. The subgroup of GL(7, R) that leaves
∗φ0 invariant is the compact 14-dimensional Lie group G2. If U is the 4-plane in R

7

with last three coordinates vanishing, then ∗φ0|U = dx1234 which is equal to volV
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with suitable orientation on U hence U is a maximal plane called a coassociative
4-plane. One can show that [HL82] the subgroup of G2 preserving U is SO(4), and
G2 acts transitively on (oriented) coassociative 4-planes. So that the set COASS
of coassociative planes in R7 is isomorphic to G2/SO(4) and has dimension 8.
The Grassmannian G+

4 R7 of all oriented 4-planes in R7 is of dimension 12 so
COASS is a codimension 4 subspace of it. We also have that φ0|V = 0 for every
coassociative 4-plane V since φ0|U = 0 by definition, the action of G2 is transitive
on the coassociative 4-planes and φ0 is G2 invariant. Conversely if φ0|V = 0 for a
4-plane then there is a unique orientation which makes V a coassociative 4-plane.

We are actually interested in the following type of submanifolds. Following
[HL09] if (M, φ) is a calibrated manifold, a submanifold N is called φ-free if there
are no φ-planes tangent to M. These submanifolds have strictly φ-convex neigh-
borhoods each of which admits deformation retraction onto N. These are gen-
eralizations of totally real submanifolds in Kähler manifolds to calibrated mani-
folds, and strictly φ-convex manifolds are the generalization of Stein manifolds.
They have nice topological structures. In order to understand φ-free subman-
ifolds, some special information is needed about the related Grassmann mani-
folds. We will be using the results of [AK16] on the topology of Grassmanni-
ans. As an application we will give an answer to coassociative-free embedding
problems for some infinite families of 4-manifolds. There is very few results on
the coassociative-free embeddings of 4-manifolds. Only notable obstruction is
the Euler characteristic of İ. Ünal in [Ü11]. One can for example conclude that
coassociative-free embeddings of the 4-manifolds S4, Σg × Σh for genus g, h 6= 1
are violated since they have non-zero Euler characteristic. On the other hand, the
techniques in the literature can not answer this question for χ = 0 case. Due to
our main result in this paper, we now able find better obstructions as follows.

Theorem 2.6.(Vanishing). If M4 is closed and i : M → R
7 is a coassociative(∗φ0)-free

immersion, then the Euler characteristic χM and the signature τM vanishes.

If we combine it with the results in [Ü15] on the converse, we obtain the following.

Corollary 1.1. A closed 4-manifold M admits a coassociative(∗φ0)-free immersion or em-
bedding into R7 if and only if its Euler characteristic χM and the signature τM vanishes.

One can also change the target space from the Euclidean space to any manifold
with G2 structure which is flat in a neighborhood of a point.

In the spin case we are now able to give a better obstruction as follows. We
will make use of the fact that in dimension four, parallelizability is characterized
through the following complete obstructions.

Theorem 1.2 ([HH58, Mas58]). A smooth 4-manifold is parallelizable iff w12 = e =
p1 = 0.

See also [Tho68]. So this implies that, further in the spin case the 4-manifold has
to be parallelizable. We alternatively prove this fact going through the analysis of
the Gauss map, and show that it is trivializable as well.
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Theorem 4.4. If M4 is a compact, oriented, spin manifold and i : M → R
7 is a

coassociative(∗φ0)-free immersion, then its image g(M) under the Gauss map g : M →
G+

4 R7 is contractible, so that M is parallelizable.

Our Proposition 2.5 is crucially used in the proof of the main result of the pa-
per [Ü15]. So our paper fills a gap in the literature in this perspective. As another
application we illustrate our results through a series of examples in section §5. We
do a similar computation from this series in section §3 for the Cayley-free case.
In [Ü18] using h-principle techniques, an if and only if theorem is proved for this
case as well. In section §3 we prove our main result, in section §4 we prove an
injectivity lemma and applications on the Gauss map.

Acknowledgements. We thank B. Lawson and S. Akbulut for their sugges-
tions. Many thanks to J. Morgan for very useful remarks. Thanks to T. Önder
for some referencing. Thanks to the anonymous referee for useful remarks. This
work is partially supported by Tübitak (Turkish science and research council)
grant ♯114F320.

2 Coassociative-free Immersions

In this section we will present applications to the immersion theory. We will
be using results on the topology of the oriented Grassmann space G+

3 R7. We
denote the canonical(tautological) vector bundle and its orthogonal complement
by E = E7

3 and F = F7
3 on this space. We will often be using the following result.

Theorem 2.1 ([SZ14]). We have the following characteristic class relations for the bun-
dles over the Grassmannian G+

3 R7,

(a) p1E = −p1F, p2
1E = e2F.

(b) p1E[CP2] = p1E[CP2] = eF[CP2] = −eF[CP2] = 1.

(c) 1
2(p1E ± eF) are generators in H4(G+

3 R7; Z). Their Poincaré duals are

[ASS] and [ÃSS] respectively.

(d) 1
2(p1EeF ± e2F) are generators in H8(G+

3 R7; Z). Their Poincaré duals are

[CP] and [CP2] respectively.

This is a combination of the results in Section 7 of the resource. Notice that,
to be able to say that the generators stated in part (c) are the sole generators, one
needs to know that there is no torsion as explained in [AK16]. Also note that we
can realize the embeddings of CP2 and CP2 through the inclusion of G+

2 R6 in
G+

3 R7 since the oriented Grassmannian is a double cover of the Grassmannian,
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we can include the projective space with both orientations. These two projective
spaces are the generators of H4(G

+
3 R7; R) as explained in the resource.

Let i : M → R7 be an immersion of a 4-manifold into the Euclidean space 1 .
In this case we have the associated Gauss map g : M → G+

4 R7 from the manifold
to the oriented Grassmannian. It sends a point to the 4-dimensional subspace
of the Euclidean space which is parallel to the tangent space at that point. In
general no such map exist due to lack of translation unless e.g. the space is flat
and simply connected or alternatively parallelizable. Composing this map with
the orthogonal complement map ∗ : G+

4 R7 → G+
3 R7 we get the map

g̃ : M4 −→ G+
4 R

7 −→ G+
3 R

7 where g̃ = ∗ ◦ g

which is appropriate setting for us to apply the results above. Keep in mind that
the orthogonal complement map the pullbacks the bundles as ∗∗E7

3 = F7
4 and

∗∗F7
3 = E7

4. We start with our first lemma.

M4

ASSOC+

ASSOC
−

g̃ g̃(M)

G+

3 (R
7)

Figure 1: The Gauss map and intersections

Lemma 2.2. The image g̃∗[M] = c [CP2] + (c − χM)[CP2] ∈ H4(G
+
3 R7; R) for some

c ∈ R.

1See [Fan02] for a discussion on the topological embedding problem.
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Proof. Suppose g̃∗[M] = c[CP2] + d[CP2] for some c, d ∈ R. We are given the
characteristic numbers e(F)[CP2] = 1 and e(F)[CP2] = −1 by Theorem 2.1 above.
Using these we compute

〈e(F7
3 ), g̃∗[M]〉 = c − d.

Also
〈e(F7

3 ), g̃∗[M]〉 = 〈g̃∗e(F), [M]〉 = 〈e(TM), [M]〉 = χM.

Equating these two results and eliminating the variable d = c − χM yields the
lemma.

Note that this is also true with integer coefficients since the fourth homology of
G+

3 R7 contains no torsion by [AK16]. Next we use this to compute an intersection
number.

Lemma 2.3. The intersection number g̃∗[M] • [ASS] = c.

Proof. Making use of the above information we compute the following.

g̃∗[M] • [ASS] = (c[CP2] + (c − χM)[CP2]) • [ASS]

= c〈[ASS], PD−1[CP2]〉+ (c − χM)〈[ASS], PD−1[CP2]〉

= c 〈[ASS],
p1E+eF

2 eF〉+ (c − χM) 〈[ASS],
p1E−eF

2 eF〉

= (c − χM/2) 〈[ASS], p1EeF〉+ χM/2 〈[ASS], e2F〉

= (c − χM/2) · 1 + χM/2 〈[ASS], p2
1E〉

= (c − χM/2) + χM/2

= c,

where we have used the Theorem 2.1 again. We used part (d) by dualizing the
projective spaces for illustration purposes but employing (c) and dualizing asso-
ciatives again would also suffice. Here [ASS] denotes the assocative subspace of
the Grassmannian. This is the subset of the Grassmannian which correspond to
the 3-planes in R7 calibrated by the 3-form φ.

Rather than pushing the chain forward, we can use pullbacks of forms as well
again to recompute the same number.

Lemma 2.4. Alternatively we can compute the intersection number as

g̃∗[M] • [ASS] =
1

2
(χ − 3τ).

Also we compute

g̃∗[M] • [ÃSS] = −
1

2
(χ + 3τ).
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Proof. We use the Theorem 2.1 so that,

g̃∗[M] • [ASS] = 〈PD−1[ASS], g̃∗ [M]〉

= 〈1
2(p1E + eF), g̃∗[M]〉

= 1
2 〈p1(∗

∗E) + e(∗∗F), g∗[M]〉

= 1
2 〈p1F + eE, g∗[M]〉

= 1
2 〈−p1E + eE, g∗[M]〉

= 1
2 〈−p1(TM) + e(TM), [M]〉.

because E ⊕ F = R
7 is trivial, g∗(E) = TM and the Hirzebruch signature formula

[Hir95]. Reversed oriented associative Grassmannian case is similar.

Comparing the two Lemmata we obtain the value c = 1
2(χ − 3τ). This improves

our Lemma 2.2 and gives us the full fundamental class formula as follows.

Proposition 2.5. The image of the canonical class in H4(G
+
3 R7; R) is given by

g̃∗[M] =
1

2
(χ − 3τ) [CP2]−

1

2
(χ + 3τ) [CP2]

for any immersion i : M −→ R7.

In particular, this tells us that the image of the orientation class is independent
from the immersion. This result is used in the proof of a main result in [Ü15].
If χ = τ = 0 then according to our Proposition 2.5 intersection numbers of the
image of the canonical class with coassociatiatives is automatically zero. Now,
from this point on assume that the immersed 4-manifold is coassociative-free. We
are ready to prove our vanishing result.

Theorem 2.6 (Vanishing). If M4 is closed and i : M → R
7 is a coassociative(∗φ0)-free

immersion, then the Euler characteristic χM and the signature τM vanishes.

Proof. Since through the star map we have

g∗[M] • [COASS] = ∗∗ ◦ g∗[M] • ∗∗[COASS] = g̃∗[M] • [ASS],

the answer c above is the intersection of the image of the tangent planes with
the coassociative planes in G+

4 R7. Free condition implies that the intersection
numbers of tangent planes of M with coassociative and reversed oriented coasso-
ciatives are zero. These are the intersection numbers in Lemma 2.4 and gives the
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linear system

0 = 1
2(χ − 3τ)

0 = − 1
2(χ + 3τ).

This is in accordance with the following generalization of a theorem of [Ü11].
This Theorem tells us that the Euler characteristic is zero even for any manifold
with G2 structure instead of the Euclidean 7-space.

Theorem 2.7 (χ vanishing). Let i : M → X be a coassociative-free immersion of a
smooth 4-manifold into a 7-manifold (X, ϕ) with a G2 structure. Then the Euler charac-
teristic χM vanishes.

The same proof carries on if one takes the nowhere vanishing three form,

η := i∗(ϕ|i(M)) 6= 0

provided by ∗ϕ freeness. Then one have to use an arbitrary metric to take its
Hodge star ∗η ∈ Λ

1M and convert to a nowhere vanishing vector field on M by
the metric duality.

3 Cayley-free Embeddings

The intersection theoretic computation techniques that we used in the previous
section can also be used in the Cayley case as well. This case is easier because
the fundamental class formula is known already. Let f : M −→ R8 be an immer-
sion of a compact oriented 4-manifold, then its Gauss map g : M −→ G+

4 R8 is
computed as [SZ14],

g∗[M] =
1

2
χ[G(4, 5)] + λ[G(1, 5)] +

3

2
τ[G(2, 4)].

Here λ = 1
2 g∗eF[M] and τ = τ(M) = 1

3 g∗p1E[M] = 1
3 p1[TM] is the signature. We

will be dealing with the embedding case, so that λ = 0. We intersect the Gauss
image of the embedded 4-manifold with the Cayley and anti-Cayley planes. We
can compute the first intersection number as follows,

g∗[M] • [CAY] = 〈PD−1[CAY], g∗[M]〉

= 〈1
2(p1E − eE + eF), χ

2 [G(4, 5)] + 3τ
2 [G(2, 4)]〉

= − 1
2(χ − 3τ)
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using the integration table in page 517. To be able to compute the intersection
number with the negative Cayley locus, we have to figure out the Poincaré dual.
Reversing the orientation of the Cayley planes, orientation of the bundles are
reversed, so that the sign of the Euler classes are changed however the first Pon-
trjagin class does not change sign. So that the Poincaré dual becomes,

PD−1[C̃AY] =
1

2
(p1E + eE − eF).

Inserting this, we compute the second intersection number as follows,

g∗[M] • [C̃AY] = 〈PD−1[C̃AY], g∗[M]〉

= 1
2(χ + 3τ).

Cayley-free condition implies that these two intersection numbers has to be zero,
so the linear equations implies the vanishing similarly as in the previous section.

Theorem 3.1 (Vanishing). If M4 is compact and i : M → R8 is a Cayley(ψ0)-free
embedding, then the Euler characteristic χM and the signature τM vanishes.

Using the appropriate h-principle techique, this result can be extended to the
Cayley free embeddings into 8-manifolds with Spin7 structure. See [Ü18] for
details.

4 Contractibility of the Gauss map

In this section we will focus on the Gauss map, and prove parallelizability through
it. We shall start with proving that the Hurewicz homomorphism

hn : πn(G
+
3 R

7) −→ Hn(G
+
3 R

7; Z)

is injective at the level n = 4. This homomorphism is defined by sending a
homotopy class to its homology class. So that hn([ f ]) = f∗[Sn] where f represents
a homotopy class, and f∗ is the push forward at the homology level.

The idea of the proof is to use the generalized Mod-Cp Hurewicz Theorems. We
start with an introduction to them which follows [DK01]. Alternative classical
resources are [MT68] and [Hu59]. For a subset P of prime numbers, let CP denote
the class of torsion abelian groups which has no elements of order a positive
power of p ∈ P. This class actually satisfies the properties of a so-called Serre
Class. If we take P = {p} then we just use the notation Cp. So as an example we
have

C7 = Torsion abelian groups which has no element of order 7k, k ∈ Z
+.
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Obviously the groups Z5, Z24 etc. but Z49 are in this category. A homomorphism
ϕ : A → B between two abelian groups is called a CP-monomorphism if Ker ϕ ∈ CP,
a CP-epimorphism if Coker ϕ ∈ CP and a CP-isomorphism if both of these conditions
are satisfied. Now we are ready to state the following classical theorem whose
proof involves spectral sequences [DK01].

Theorem 4.1 (Mod-CP Hurewicz). Let X be 1-connected and πi(X) ∈ CP for all i < n.
Then, Hi(X; Z) ∈ CP for all 0 < i < n and the Hurewicz map hn : πn(X) → Hn(X; Z)
is a CP-isomorphism.

As an application we obtain a central result of this section.

Lemma 4.2 (Injectivity). The Hurewicz homomorphism

h4 : π4(G
+
3 R

7) −→ H4(G
+
3 R

7; Z)

is injective.

Proof. Following [AK16], G+
3 R7 is simply-connected so 1-connected, and possess-

ing π0123 = {0, 0, Z2, 0} as the first four homotopy groups none of which contains
elements of order 7k, k ∈ Z

+ hence of class C7.
Taking X = G+

3 R7 and n = 4 in the above Mod-C7 Hurewicz Theorem 4.1,
we get that the Hurewicz map h4 : π4(X) → H4(X; Z) is a C7-isomorphism. In
particular Ker h4 ∈ C7. Besides that Ker h4 is certainly contained in π4(G

+
3 R7) =

Z ⊕ Z from [AK16] which is torsion free. C7 is a class of torsion groups, and the
only torsion subgroup of Z ⊕ Z is the trivial one, hence Ker h4 = 0.

It is a curious question whether this map is surjective as well. We leave it as an
exercise to the reader. Covering all homology classes by means of spheres does
not seem likely in a middle level though.

Combining the Proposition 2.5 and the vanishing Theorem 2.6 we obtain the
following consequence.

Corollary 4.3. If M4 is compact and i : M → R7 is a coassociative(∗φ0)-free immersion,
then g∗[M] = 0 in H4(G

+
4 R7; Z) for the associated Gauss map g.

This observation eventually leads to the contractibility of the Gauss map.

Theorem 4.4. If M4 is a compact, oriented, spin manifold and i : M → R7 is a coasso-
ciative (∗φ0) free immersion, then its image g(M) under the Gauss map g : M → G+

4 R7

is contractible, so that M is parallelizable.

Proof. The proof uses the obstruction theory. See [Hu59, MS74]. We will work
with the equivalent map g̃ : M → G+

3 R7 for convenience. We shrink the map
skeleton by skeleton. Restriction of g to the 0-th and 1-st skeleton of M is easily
contracted to a point by a homotopy because the underlying space G+

4 R7 is con-
nected and simply connected. Next comes the problem of shrinking the map over
the 2-skeleton.

g̃ : M(2)/M(1) → G+
3 R

7.

9



Since we already shrinked the map over the 1-skeleton, this gives a cocycle hence
a cohomology class in the second cohomology of M with π2 coefficients.

o2 ∈ H2(M; {π2(G
+
3 R

7)}) = H2(M; Z2).

The Stiefel-Whitney class w2 is equal to the obstruction o2. Since M is spin, by
our assumption we get rid of this obstruction and the next one is

o3 ∈ H3(M; {π3(G
+
3 R

7)}) = 0,

since the homotopy group π3(G
+
3 R7) is trivial as computed in [AK16]. The last

obstruction lies

o4 ∈ H4(M; {π4(G
+
3 R

7)}) = H4(M; {Z ⊕ Z}).

Since M is a smooth 4-manifold and the top homology is either Z or trivial, we can
use a cell complex decomposition with only one 4-cell. After we have contracted
the 3-skeleton of M to a point in G+

3 R7, the 4-cell gives a map S4 −→ G+
3 R7,

homology class of which is the same as g̃∗(M). We have already shown that the
homology class [g̃∗(M)] is trivial in H4(G

+
3 R7; Z). In Section 4 we have shown

that the Hurewicz homomorphism

h4 : π4(G
+
3 R

7) −→ H4(G
+
3 R

7; Z)

is injective. Hence the homotopy class of the 4-cell map is trivial, consequently
g̃(M) is contractible. Hence M has trivial tangent bundle.

5 Some examples

In this section we will give some examples to illustrate our theorems. In particular
when we lift some assumptions we will see that there are spaces which become
no longer embeddable in the appropriate way. Our main theorem applies to some
connected sums of the panelled web 4-manifolds denoted by M1

n, M2
g,n, M3

g,n, M4
n

which are constructed in [AK12] and also M5
g,n is defined in [KOA13]. These

manifolds are constructed using some special type of Kleinian groups that goes
under the same name. They actually come up with a Riemannian metric which
is locally conformally flat. But we are only interested in their underlying smooth
structure here. Among their topological invariants, their Euler characteristics are
computed as follows.

χ(M1
n) = −4g, χ(M2

g,n) = χ(M3
g,n) = χ(M5

g,n) = 4 − 4g − 4n, χ(M4
n) = −2n.

Since these spaces come up with locally conformally flat metrics their signature
is zero. The following examples satisfy all the hypothesis of our Theorem 4.4

and Theorem 2.7. However their tangent bundle is non-trivial because of the
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non-triviality of the signature obstruction p1[M] = 3τ(M) 6= 0. In the following
Corollary, K3 denotes the underlying smooth manifold of a smooth quartic in
complex projective space, namely the K3 Surface.

Corollary 5.1. The following families of 4-manifolds

1. M1
11k ♯ 2kK3 for all k > 0

2. M2,3,5
g,11k−g ♯ 2kK3 for all 11k > g > 0

3. M4
11k−2 ♯ kK3 for all k > 0

have the invariants w1234 = 0, χ = 0 but are not parallelizable, so they do not admit any
coassociative-free immersions into R7, as well as Cayley-free immersions into R8.

Proof. We will check the invariants of the 4-manifolds. Let us start form the Eu-
ler characteristic and signature. Using the connected sum formula for the Euler
characteristic we obtain the following.

χ(M1
11k ♯ 2kK3) = χ(M1

11k)− 2kχ(S4) + 2kχ(K3) = −4 · 11k − 2k · 2 + 2k · 24 = 0.

Orientability and being spin is preserved under the connected sum operation.
Since all the building blocks we use are orientable and spin, so their connected
sum hence the first and second Stiefel-Whitney classes vanish: w1 = 0 and w2 = 0
as obstructions. The first Steenrod operator coincides with the Bockstein homo-
morphism [MT68] and applying the Wu’s explicit formula [MS74] and orientabil-
ity we get

βw2 = Sq1w2 = w1w2 + w3 = w3.

See also [Hat18]. Because this is a homomorphism, w3 = 0 as well. We have
already computed the Euler characteristic as zero, so its mod 2 reduction, hence
w4 = 0. The signature is additive under the connected sum operation, so,

τ(M1
11k ♯ 2kK3) = τ(M1

11k) + 2kτ(K3) = 0 + 2k · (−16) = −32k,

which is nontrivial, so that the tangent bundle is nontrivial as well.

Consequently these examples show that the vanishing of signature is a crucial nec-
essary condition for coassociative free and Cayley free immersions/embeddings
of 4-manifolds into manifolds with G2 and Spin7-structure, respectively. The pan-
elled web manifolds with even indices have vanishing signature and other invari-
ants. On the other hand, they have strictly negative Euler characteristic, hence
they do not embed in a free way to any manifold with G2 or Spin7 structure.
Other family of examples can be constructed using surgeries, like infinite family
of homotopy K3 surfaces, for example knot surgered symplectic homotopy K3 sur-
faces E(2)K , where K is any fibered knot. See [CK11] and references therein for
an overview and current results in the subject.
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We also give examples of parallelizable 4-manifolds with complicated non-
simply-connected topology. Here S2 × S2 stands for the 4-manifold which is the
product of two 2-spheres.

Theorem 5.2. The following families of 4-manifolds are parallelizable.

1. M1
g ♯ 2gS2 × S2 for all g > 0

2. M2,3,5
g,n ♯ (2g + 2n − 3)S2 × S2 for all g, n > 0

3. M4
n ♯ (n − 1)S2 × S2 for all n > 0.

Proof. Again we are supposed to check the invariants. Taking into consideration
that χ(S2 × S2) = 4 and τ(S2 × S2) = 0 the proof is similar to that of the Corollary
5.1. One can check their invariants as w1234 = e = p1 = 0. So by the classical
parallelizability Theorem 1.2 these 4-manifolds all have trivial tangent bundle.

Consequently they satisfy the necessary conditions of our vanishing Theorems
2.6 and 3.1. Then combining with the results in [Ü15] and [Ü18] we can conclude
that they have coassociative-free and Cayley-free embeddings into R7 or R8 and
other manifolds with G2 structure or Spin7 structure which are flat in a neigh-
borhood of a point, respectively. Hence these 4-manifolds with arbitrarily large
fundamental groups (also arbitrarily large first or second Betti number) are freely
embeddable into flat tori like T

7 or T
8.

Orta mh. Zübeyde Hanim cd. No 5-3 Merkez 74100 Bartin , Türkíye.
E-mail address: kalafat@math.msu.edu
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