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Abstract

We construct self-dual(SD) but not locally conformally flat(LCF) metrics
on families of non-simply connected 4-manifolds with small signature. We
construct various sequences with bounded or unbounded Betti numbers and
Euler characteristic. These metrics have negative scalar curvature. As an
application, this addresses the Remark 4.79 of [Bes].

1 Introduction

Self-dual manifolds were introduced by Penrose in [Pen], and they were put on
a firm mathematical foooting by Atiyah, Hitchin and Singer in [AHS]. After the
explicit constructions of Poon, LeBrun, Joyce, and the connected sum theorem of
Donaldson and Friedman, Taubes proved that every 4-manifold admits an anti-
self-dual metric after taking connected sum with kCP2, where k is sufficiently
large [Tau]. Although this is a very useful theorem, the anti-self-dual metric here
is not explicit. The minimal number for k is called the Taubes Invariant, which
is unknown for most 4-manifolds. The number k in Taubes’ work is very large.
There are many explicit constructions of self-dual metrics on simply connected
manifolds, however there are very few examples for the non-simply connected
case which are not locally conformally flat. The self-dual metrics on the blow-ups
of the connected sums of S3 × S1 [LeH, Kim], and on the blow-ups of S2 × Σg

for g ≥ 1 [LeR, KLP] are the only explicitly known examples. Here we give new
examples of self-dual metrics on closed non-simply connected 4-manifolds, and
show that many new topological types can be realized.

The idea is first to construct LCF manifolds using the techniques introduced
in [AK]. See Figure 1 for the construction of the manifolds. The manifolds in
[AK] do not satisfy the hypothesis for producing self-dual metrics with minimal
number of blow-ups. So one needs to make modifications and produce a new
family. One needs to disconnect the boundary of the related 3-manifold. So that
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J.Kim’s theorems are applicable and as a consequence these manifolds admit the
hyperbolic ansatz self-dual metrics of LeBrun. We obtain the following results.

Theorem 1.1. The manifolds M5
g,n♯ lCP2 admit self-dual metric of negative scalar cur-

vature for all l ≥ 2.

Corollary 1.2. There are new infinite families of closed, non-simply connected, self-dual
4-manifolds, with Betti number growth as follows:

1. b1 → ∞, b2 bounded, and χ → −∞,

2. b1 → ∞, b2 → ∞, and χ → −∞,

3. b1 → ∞, b2 → ∞, and χ bounded,

4. b1 bounded, b2 → ∞, and χ → ∞,

5. b1 → ∞, b2 → ∞, and χ → ∞.

These manifolds have strictly negative scalar curvature.

We also prove the following theorem using Kim’s result. Note that this cannot
be obtained automatically from Taubes’ theorem since it does not say anything
about the scalar curvature. See [AK] for the constructions of the manifolds in this
theorem.

Theorem 1.3. The manifolds M1
g♯ lCP2, M2

g,n♯ lCP2, M4
1♯ lCP2 admit self-dual metrics

of negative scalar curvature for all sufficiently large l.

Since their signature is nonzero, the above manifolds do not admit any locally
conformally flat(LCF) metrics. In Remark 4.79 of [Bes], examples of compact,
self-dual (half-conformally flat) manifolds which are not conformally Einstein are
asked for. The family of metrics in the parts 1 and 2 of Corollary 1.2 has negative
Euler characteristic. This violates the Hitchin-Thorpe inequality; see [B] or the
more recent [T, H]. If there is an Einstein or conformally Einstein metric on
these compact 4-manifolds then the Euler characteristic has to be non-negative by
Hitchin-Thorpe. So these metrics are instances in the remark which are explicit,
non-LCF and of negative scalar curvature type.

Acknowledgements. We would like to thank to Claude LeBrun for directing
us to the field, and Jongsu Kim for encouragement. The figure was constructed
by using the IPE software of Otfried Cheong.
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2 Background and Proofs

To enable the construction of the self-dual metrics, we first construct locally con-
formally flat(LCF) metrics using Braam’s conformal compactification procedure
given in [Br]. One starts with a hyperbolic 3-manifold N with boundary which
is obtained from the hyperbolic space by taking the quotient with a cusp-free ge-
ometrically finite Kleinian group. Then one spins around the boundary to get a
closed Riemannian 4-manifold X,

X :=
N × S1

{b × S1| b ∈ ∂N}
.

Actually, this corresponds to crossing the 3-manifold with a circle and then con-
tracting the circles that lie on the boundary. The above process coupled with the
magnetic monopoles of LeBrun [LeEx] is called the hyperbolic ansatz, which yields
self-dual metrics on the blow-ups. The following theorem of Jongsu Kim tells us
the precise conditions needed to be able to carry out the hyperbolic ansatz.

Theorem 2.1 ([Kim]). If N = H3/Γ is a noncompact hyperbolic 3-manifold obtained
from a cusp-free geometrically finite Kleinian group Γ and H2(N̄; R)/H2(∂N; R) is at
most 1-dimensional, then there exist self-dual metrics on X♯ lCP2 for all sufficiently large
natural number l where X is obtained from N by spinning around its boundary. The sign
of the conformal class of these metrics is identical to the sign of 1 − d(Λ(Γ)).

If moreover H2(N̄; R) = H2(∂N; R) we can take l to be bigger than or equal to the
number of connected components of ∂N.

To check the homological condition appearing in the hypothesis of the theorem,
we need to use the following isomorphism [Br] where the coefficients are integers:

H2(N̄)⊕ H1(N̄, ∂N̄)−̃→H2(X). (1)

To establish this isomorphism one needs a little bit of work, details of which
are not given in [Br] so we will give a proof here. Rather than shrinking the
boundary circles, one can attach 2-discs to fill out those circles; this is called the
capping [AK] operation. So one can work with the following decomposition of
the 4-manifold:

X = N̄ × S1 ∪ ∂N̄ × D2 where N̄ × S1 ∩ ∂N̄ × D2 = ∂N̄ × S1.

If we write down the Mayer-Vietoris exact sequence [Ha] for this pair we get the
following piece:

· · · → H2(∂N ×S1)
A
→ H2(N ×S1)⊕ H2(∂N)

B
→ H2(X)

C
→ H1(∂N ×S1)

D
→ H1(N ×S1)⊕ H1(∂N) → · · ·

To analyze this sequence we need the maps involved in the relative exact se-
quence:

· · · → H1(∂N)
i1
∗→ H1(N)

j1∗→ H1(N, ∂N)
∂1
∗→ H0(∂N)

i0
∗→ H0(N) → 0 ·
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From this point on, under the assumption that ∂N has one or two connected
components, one gets an easier proof. Nonetheless we will prove the general
assertion. We make up the following exact diagram.

H2(X)
C

−→ Ker i0
∗

B
ր ց

H2(∂N)⊕ H1(∂N)
A

−→ H2(N)⊕ H1(N) ⊕ H2(∂N) 0 ·
ց

ϕ ր
H2(N)⊕ Imj1∗

The domain and range of the map A are decomposed into basic components
according to the Künneth formula, and given by A(a, b) = (i∗a, i∗b,−a). Using
these conventions we define the new map ϕ by ϕ(x, y, z) = (x+ i∗z , j1∗y). One can
easily check the exactness by chasing through the relative exact sequence, where
the map j1∗ is also involved. So Ker ϕ = ImA and ϕ is surjective. The upper part
is taken from the Mayer-Vietoris sequence above, where the map D is defined by
D = I ⊕−I, and after decomposing into components according to Künneth, one
can make the identification Ker D = Ker i0

∗. Since CokerA ≈ Im ϕ, the short exact
sequence with nucleus H2(X) in the Mayer-Vietoris sequence gives

0 −→ H2(N)⊕ Imj1∗
B̄

−→ H2(X)
C

−→ Ker i0
∗ −→ 0 ·

On the other hand, since Coker i1
∗ ≈ Im j1∗, pulling out the short exact sequence

with nucleus H1(N, ∂N) from the relative sequence reads,

0 −→ Imj1∗
inc
−→ H1(N, ∂N)

∂1
∗−→ Ker i0

∗ −→ 0 ·

All the maps are natural. Now H0(∂N) is always free, so these exact sequences
split, and combining the two parts yields the isomorphism (1).

Next using the Lefschetz duality H1(N, ∂N) ≈ H2(N) and the universal coef-
ficients theorem, after canceling the Ext terms, the isomorphism becomes

Hom(H2(N), Z)⊕ H2(N) ≈ Hom(H2(X), Z).

Writing this according to the free and torsion pieces it takes the form

F2N ⊕ F2N ⊕ T2N ≈ F2X.

So comparing the two sides we obtain T2N = 0 and 2F2N ≈ F2X.

Now the paneled web 4-manifolds M1
g, M2

g,n and M4
1 of [AK] have b2 = 2, and

by the above this gives b2(N) = 1, which satisfies the first hypothesis of Theorem
2.1. However, they do not satisfy the second homological hypothesis. Next we
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construct a new set of manifolds to handle this situation. We modify the sequence
M2

g,n. To satisfy the second hypothesis, the boundary surfaces should generate the
second homology of the 3-manifold N. The examples in [AK] have all connected
boundaries, and the boundary bounds the 3-manifolds and is homologous to zero;
hence the map

i∗ : H2(∂N, Z) → H2(N, Z)

is zero. In order to get a nontrivial image, we should disconnect the boundary.
So whenever we are identifying the boundary cylinders in the construction of
the manifolds M2

g,n we identify in a parallel way, this time to get two distinct

boundary components. In this way we obtain the sequence of manifolds M5
g,n

which is shown concretely in Figure 1. The following theorem ensures that the
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Figure 1: The LCF manifolds M5
g,n.

boundary surfaces generate H2(N, Z).

Theorem 2.2. Let N be a compact orientable 3-manifold with two boundary components
and b2 = 1. Then each of the boundary surfaces is a generator of H2(N, Z).

Proof. Take two copies of the manifold N1 and N2 such that the second copy
is reversely oriented. Then identify them along their boundaries to form the
compact 3-manifold M = N1 ∪∂N N2 without boundary, which we call the double
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of N. If we look at the Mayer-Vietoris exact sequence in this case, we see the
following piece:

0 −→ H3(M) −→ H2(∂N)
i1
∗⊕−i2

∗−→ H2(N1)⊕ H2(N2)
j1∗+j2∗−→ H2(M) −→ · · ·

≀≀ ≀≀
Z ⊕ Z Z ⊕ Z

For the second isomorphism here it can be checked through the universal coef-
ficients theorem that there is no torsion. Assuming that the maps act through
canonical isomorphisms, the images of the generators are

i1
∗ ⊕−i2

∗ : (1, 0) 7→ (k, k), (0, 1) 7→ (l, l)

for some k, l ∈ Z. Since ∂N bounds both N1 and N2, the image of (1, 0) + (0, 1)
under i1

∗ and i2
∗ is zero implying l = k. Since by compactness H2(M) is torsion

free, the isomorphism following from exactness:

Z ⊕ Z/〈k(1, 1)〉 ≈ H2(M)

forces k = ±1, and hence it is a generator in both components. Furthermore, we
have H2(M) = Z.

Since both of the homological conditions of [Kim] are satisfied, Theorem 1.1 fol-
lows.

Next we compute the topological invariants. The fundamental group

〈a1 · · · bg, c1 · · · cn, d1 · · · dn, e1 · · · en | a−1
1 b−1

1 a1b1 · · · a−1
g b−1

g agbgc1 · · · cnd−1
n · · · d−1

1 , eidie
−1
i ci〉

gives relations di = c−1
i for i = 1 · · · n and (c1 · · · cn)2 = 1, after abelian-

ization. Introducing a new variable c̄ := c1 · · · cn and dropping the redundant

cn = c−1
n−1 · · · c−1

1 c̄ yields

H1(M5
g,n; Z) = 〈a1 · · · bg, c1 · · · cn−1, c̄, e1 · · · en | c̄2〉+ ≈ Z

2g+2n−1 ⊕ Z2.

Counting the handles gives χ = 4 − 4g − 4n and b2 = 0, then H2(M5
g,n; Z) =

Z2. After taking the connected sum with l copies of CP2, we get the following
invariants for the manifolds M5

g,n♯ lCP2

b1 = 2g + 2n − 1, b2 = l, χ = 4 − 4g − 4n + l.

Now, the sequences in Corollary 1.2 can be obtained by letting g, n −→ ∞,
and taking l = g + 2 or l = 4(g + n) in addition. Letting l −→ ∞, and taking
l = 5(g + n) in addition. Alternatively taking l = g + n one can again produce
other sequences of the second type.
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Remark 2.3. The sign of 1 − d(Λ(Γ)) is already computed to be negative in [AK] for
the paneled web groups. This assures the sign of the scalar curvature in Theorem 1.1 as a
consequence of Theorem 2.1 of Kim.
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