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Locally conformally flat and self-dual
structures on simple 4-manifolds

Mustafa Kalafat

March 18, 2014

Abstract

This is a survey article on the existence of locally conformally flat (LCF)
and self-dual (SD) metrics on various basic 4-manifolds like simply-connected
ones or product types.

1 Introduction

A Riemannian manifold (M, g) is called locally conformally flat (LCF) if there is a
neighborhood U of any point, and a strictly positive smooth function f such that
g̃ = f g is a metric of zero sectional curvature everywhere on U ⊂ M. Sometimes
the more concise terminology conformally flat is also used since globally confor-
mally flat manifolds admit flat metrics. They are quotients of Rn so that there is
no need to give them a new name. Alternating and symmetry properties imply
that we can think of the (0, 4) Riemann curvature tensor R as an element of the
space S2Λ2M ⊂ ⊗4T∗M. It also satisfies the algebraic Bianchi identity, hence it
lies in the kernel of the Bianchi symmetrization map

b : S2Λ2M → S2Λ2M, b(T)(x, y, z, t) :=
1

3
T((x, y, z), t).

Since b2 = b and b is GL(T∗M)-equivariant, we have the equivariant decomposi-
tion S2Λ2M = Ker b ⊕ Im b, where we call this kernel as the space of curvature-
like tensors. Thinking Ker b as an invariant O(g)-module, we have a unique ir-
reducible decomposition, according to this the curvature tensor decomposes as
R = U ⊕ Z ⊕ W. The components can be computed as

U =
s

2n(n − 1)
g 7 g and Z =

1

n − 2

◦
Ric 7 g
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where s is the scalar curvature,
◦

Ric= Ric − s
n g is the trace-free Ricci tensor, “7”

is the Kulkarni-Nomizu product defined by,

A 7 B (X, Y, Z, T) :=
A(X, Z) B(X, T)
A(Y, Z) B(Y, T)

+
B(X, Z) A(X, T)
B(Y, Z) A(Y, T)

,

which is commutative and multiplies two symmetric 2-tensors to produce a curvature-
like 4-tensor. Finally W is the Weyl tensor which is defined to be what is left over
from the first two pieces.

Next, assume that we are in dimension n = 4 and our manifold is oriented.
Then the metric together with the orientation determines a unique volume form
ωg. In this case we define the Hodge star involution ∗g : Λ2 → Λ2 pointwise
by imposing the equality 〈α, β〉ωg = α ∧ ∗β. This yields the ±1 eigenspace de-

composition Λ2 = Λ2
+ ⊕ Λ2

− of the 2-forms. These 3-dimensional eigenspaces
are interchanged if one works with the reversed orientation. By an appropriate
change of indices, we consider W : Λ2 → Λ2 as an operator. One can show that
the mixed parts W−

+ : Λ2
+ → Λ2

− and W+
− : Λ2

− → Λ2
+ vanish so that the Weyl

tensor decomposes as W = W+
+ ⊕ W−

− . Abbreviating W± = W±
± , we say that the

Riemannian manifold is self-dual if W− ≡ 0, anti-self-dual if W+ ≡ 0 respectively.
We also call each of these two cases as half-conformally flat if we do not want to
specify any orientation. This terminology actually comes from the interpretation
that W is a conformally invariant tensor if one considers it as a (1, 3) tensor. One
can show that the manifold is conformally flat if and only if the tensor W ≡ 0
for dimensions n ≥ 4. See [Kü] for a proof. In dimension n = 3 local conformal
flatness is determined by the Schouten tensor, and in dimension n = 2 all mani-
folds are locally conformally flat. Basic examples of LCF manifolds are constant
sectional curvature spaces, e.g., Sn and Tn, their products with S1 or R, and prod-
ucts of two Riemannian manifolds with constant sectional curvature 1 and −1
respectively. See [Bes] for further details. Note that SD metrics are only defined
on orientable 4-manifolds. Basic SD 4-manifolds are first of all LCF spaces, e.g.
S4, T4, S1 × S3 (see Theorem 3.10), among non-LCF ones we have CP2 with its
Fubini-Study metric (see Corollary 3.1) and scalar-flat-Kähler (SFK) surfaces (see
Theorem 2.1) in particular the K3 surface. SD 4-manifolds are first considered by
[Pen] and later put on a firm mathematical foundation in [AHS].

In this survey, we analyze LCF and SD structures on various simple 4-manifolds
like product type or simply-connected. These results are spread out various
places. Some of them are not written, if so not in detail. We hope that it is a
good public service to accumulate these results in an article. Interested reader
may consult to the resources [AK] and [AKO] for some recent progress on this
type of geometry. In section 2 we introduce the basic tools, in section 3 we ap-
ply these tools on the manifolds and finally in the appendix we present a partial
result along with an open problem.

Acknowledgements. Thanks to S. Finashin, C. Koca and M. Korkmaz for
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useful discussions.

2 Tools

In this section we develop the main tools to analyze our spaces. Let M be a
closed, oriented 4-manifold. We have the following two basic identities which
connect quantities related to curvature with topological numbers.

χ(M) =
1

8π2

∫

M

s2

24
− |

◦
Ric |2

2
+ |W+|2 + |W−|2ωg (1)

τ(M) =
1

12π2

∫

M
|W+|2 − |W−|2ωg (2)

The first one is called the generalized Gauss-Bonnet theorem [AW, ST] which can also
be generalized to all even dimensions. The second one is called the signature for-
mula which is specific to dimension 4. It is obtained through the Hirzebruch signa-
ture theorem [Hi] τ(M) = 1

3 p1[M] by expanding the Pontrjagin class with Chern-
Weil theory [ST]. See also second volume of [KN]. These two equations relate
geometric information with the topological ones. As an immediate application
for example if a 4-manifold admits a locally conformally flat metric then both of
the self-dual and anti-self-dual Weyl curvatures vanish since W = W+ ⊕ W− = 0.
Hence the signature formula (2) implies that the signature τ(M) = 0. Perhaps
this signature condition is the most important topological obstruction for admit-
ting LCF metrics. We start with a very common way of producing ASD metrics
on a Kähler manifold. Recall that a Riemannian manifold is called scalar-flat if its
scalar curvature is zero everywhere.

Theorem 2.1. A Kähler surface is scalar-flat(SF) iff anti-self-dual(ASD).

Proof. We follow [Bes] and [LS]. The alternating and symmetry properties of the
curvature tensor implies that it is a symmetric section of the bundle ∧2 ⊗ ∧2.
Furthermore, since we are on a Kähler manifold we have the identities [KN],

R(JX, JY)Z = R(X, Y)Z and R(X, Y)JZ = JR(X, Y)Z.

These imply respectively the J-invariance of the first and the second pair of com-
ponents of the curvature tensor hence it is a type (1, 1) real 2-form in both of
these components. So we can think of the Kähler curvature tensor as a symmetric
section of ∧1,1 ⊗ ∧1,1 or after dualizing the second component, as a symmetric
element of End(∧1,1).

Since we are on a complex manifold, we have the Dolbeault decomposition
of 2-forms ∧2

C
= ∧2,0 ⊕ ∧1,1 ⊕ ∧0,2 according to their type. This decomposition

is orthogonal with respect to the action of the Hodge star operator ∗g. We also
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have the orthogonal eigenspace decomposition in dimension 4 as explained in the
introduction. In the Kähler case, if one complexifies these eigenspaces, we claim
to have the following:

∧2
+C

= Cω ⊕∧2,0 ⊕∧0,2

∧2
−C

= ∧1,1
0

Here, the set of primitive (1, 1) forms ∧1,1
0 can be defined to be the orhogonal

complement of ω in ∧1,1. Take a unitary coframe {dz1, dz2} at a point. Then the
Kähler form is

ω =
i

2

2

∑
i=1

dzi ∧ dz̄i = dx1 ∧ dy1 + dx2 ∧ dy2

and the volume form is computed as

ωg =
ω2

2!
=

−1

4
dz11̄22̄ = dx1 ∧ dy1 ∧ dx2 ∧ dy2.

Since ∗g(dxi ∧ dyi) = dx3−i ∧ dy3−i we have ∗gω = ω, i.e., the Kähler form is
self-dual. This observation links to the following interpretation of the primitive

(1, 1) forms. We can write ∧1,1
0 = Ker L, for the Lefschetz operator L : ∧1,1 → ∧2,2

defined by L(α) = α ∧ ω since

〈α, ω〉 = 0 ⇔ 0 = 〈α, ω〉ωg = α ∧ ∗gω = α ∧ ω = L(α).

The forms ω5 = dz1 ∧ dz2 and ω6 = dz̄1 ∧ dz̄2 pointwise generate the complex
bundles ∧2,0 and ∧0,2 respectively. One easily checks that their real parts are self-
dual. Hence ω, ω5, ω6 ∈ ∧2

+C
are orthogonal and their real parts are elements

of the real rank 3 vector bundle of self-dual 2-forms ∧2
+. On the other hand the

(1, 1) forms ω2 = dz1 ∧ dz̄2, ω3 = dz2 ∧ dz̄1 and ω4 = dz1 ∧ dz̄1 − dz2 ∧ dz̄2 are
orthogonal and their real parts are anti-self-dual. For example ∗gℜω2 = ∗g(dx12 +

dy12) = −(dx12 + dy12) = −ℜω2. Moreover they are all orthogonal to ω, ω5,
ω6 ∈ ∧2

+C
.

Now, since the curvature operator R is in End(∧1,1), its upper left piece
R+

+ = W+ + s
12 I is an element of End(Cω). So suppose R+

+ = f ω ⊗ ω♯ for
some function f : M → R.

R Cω ⊕∧2,0 ⊕∧0,2 ∧1,1
0

Cω ⊕∧2,0 ⊕∧0,2 W+ + s
12 I

◦
Ric

∧1,1
0

◦
Ric W− + s

12 I

Table 1: Curvature operator for Kähler surfaces
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R Cω ∧1,1
0

Cω s/4·
◦

Ric

∧1,1
0

◦
Ric W− + s

12 I

R+
+ Cω ∧2,0 ∧0,2

Cω s/4· 0 0

∧2,0 0 0 0

∧0,2 0 0 0

Table 2: Curvature operator and its self-dual part for Kähler surfaces

To figure out the function f we need to compute some inner products. First
compute the norm of the Kähler form ω. Since the volume form ωg = ω2/2! we
have

〈ω, ω〉ωg = ω ∧ ∗ω = ω ∧ ω = 2 ωg.

Hence we get |ω| =
√

2. 1 Secondly we want to compute the inner product
〈ρ, ω〉 where ρ is the Ricci form defined by ρ(·, ·) = Ric(J·, ·). The above trick does
not work in this case. We need to use some tensor analysis. Start with fixing a
convention for the complex structure. Suppose J = J k

i dxi ⊗ ∂k. Then the basic

property J2 = −Id reads J k
i J

j
k = −δ

j
i

2 in terms of tensors. Keep in mind that the
ω and J are skew symmetric tensors. We compute the following:

ωij = ω(dxi, dxj) = g(Jdxi, dxj) = g(J i
k dxk, dxj) = J i

k gkj = J ji = −Jij.

ρij = ρ(∂i, ∂j) = Ric(J∂i, ∂j) = J k
i Ric(∂k, ∂j) = J k

i Rkj.

And then,

〈ρ, ω〉 = 1

2!
ρij ωij =

1

2
J k
i Rkj(−Jij) =

−1

2
J k
i Rkj J

j
k gki

=
−1

2
(−δ

j
i )Rkjg

ki =
1

2
Rkig

ki =
s

2
.

Now, writing Rω = f ω + gω⊥, multiplying both sides with the Kähler form
and using Rω = ρ, we get the following:

〈Rω, ω〉 = f 〈ω, ω〉
〈ρ, ω〉 = f 〈ω, ω〉

s/2 = f · 2
s/4 = f .

1In general dimension n, writing in local orthonormal frame ω = e1 ∧ e2 + ... + e2n−1 ∧ e2n

we compute |ω| =
√

n. Then from |ω|2ωg = ω ∧ ∗ω we get ∗ω = |ω|2ωn−1/n! so ∗ω =

ωn−1/(n − 1)!
2If one fixes the alternative convention J = Jk

i ∂k ⊗ dxi one gets J
j
k Jk

i = −δ
j
i and ωij = −Jij, a

negative sign.
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Hence W+ is a multiple of the scalar curvature s. Therefore we have s = 0 if and
only if W+ = 0.

This result has an immediate corollary.

Corollary 2.2. For Kähler metrics on a complex surface we have the pointwise identity

|W+|2 =
s2

24
. (3)

Proof. Since in the Kähler case the term R+
+ = W+ + s

12 I acts by the following

s

4





1 0 0
0 0 0
0 0 0



 ,

as in the Table 2, we have

W+ =
s

12





2 0 0
0 −1 0
0 0 −1



 .

Taking the norms of both sides yields the result.

Theorem 2.3. If a 4-manifold M admits a Kähler-Einstein (KE) metric g then
χ(M) = 3τ(M) if and only if g is self-dual (SD).

Proof. For Kähler metrics we have the pointwise identity (3)

|W+|2 =
s2

24
.

For Einstein metrics, by definition the trace-free Ricci tensor
◦

Ric= 0. Plugging
these two identities into the Gauss-Bonnet formula (1) we get

8π2χ = 2 ‖W+‖2 + ‖W−‖2. (4)

Eliminating ‖W+‖ from (2) and (4) we get the following equality

8π2(χ − 3τ) = 3 ‖W−‖,

which yields the result.

Finally we state the celebrated theorems of Kuiper. See also [Ho] for a recent
exposition and improvement.

Theorem 2.4 ([Kui]). Let (Mn, g) be a simply connected, LCF n-manifold of class C1.
Then there is a conformal immersion f : M → Sn. If in addition M is compact, then this
map is a conformal diffeomorphism.

Here comes another very useful theorem of Kuiper. See also [Kob].

Theorem 2.5 ([Kui2]). Universal cover of a compact, LCF space with an infinite Abelian
fundamental group must be Rn or R × Sn−1.

6



3 Simple 4-manifolds

We start with a basic space, the complex projective space with its standart Fubini-
Study metric. This can be though as the metric quotient of S2n+1 ⊂ Cn+1 by unit
complex scalar multiplication. Alternatively on Cn take the following complex
metric coefficients:

gFSi j̄
= gFS(∂i, ∂ j̄) :=

(1 + |z|2)δi j̄ − ziz j̄

(1 + |z|2)2
.

Taking the completion of this space gives the complex projective space CPn. As
an application of the theorems in the previous section we obtain the following.

Corollary 3.1. (CP2, gFS), the complex projective space with its Fubini-Study metric is
self-dual.

Proof. One can easily compute χ(CP2) = 3. Since the intersection form QCP2
=

[1] we have τ = 1. These satisfy the equality in Theorem 2.3.

Theorem 3.2. The underlying smooth manifold of CP2, the complex projective space does
not admit any LCF metrics.

Proof. The basic obstruction signature τ(CP2) = 1 is nontrivial.

Next we work on the 4-manifold S2 × S2, the product of two spheres. The
spheres S2 × q and p × S2 generating the homology have self-intersection zero,
and +1 with each other. So

QS2×S2 =

[

0 1
1 0

]

,

called the hyperbolic matrix and denoted by H. It has eigenvalues ±1 and hence
the signature τ = 0. 3 Hence an obstruction vanishes for locally conformally
flatness. However, this turns out to be not sufficient as follows.

Theorem 3.3. The 4-manifold S2 × S2 does not admit any LCF nor even SD metrics.

Proof. Since by Kuiper’s theorem [Kui], any compact, simply-connected, LCF Rie-
mannian 4-manifold is conformally equivalent to the round 4-sphere, S2 × S2 does
not admit any LCF metric. Suppose it does have a self-dual metric. Then W− = 0
and by the signature formula (2) the integral 0 =

∫

M |W+|2ωg. So, pointwise
W− = 0 and W = 0. This yields a LCF metric which is already a contradiction by
the previous argument.

This example also illustrates the fact that the product of LCF manifolds may
not be LCF.

3Alternatively, the map (I3,−I3) is an orientation reversing diffeomorphism of S2 × S2. So
Hirzebruch signatures mapped onto each other and τ = −τ.
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Corollary 3.4. The 4-manifold K3 is not LCF, but SD.

Proof. Since the intersection form of a K3 surface is Q = 2E8 ⊕ 3H, the signature
τ(K3) is −16 which is nonzero so that it can not be LCF. Since the first Chern
class 2πc1(K3) is zero, the zero form is a (1, 1)-form representing this class. Since
K3 is compact and Kähler by Yau’s resolution to the Calabi’s problem [Yau], there
is a Kähler metric g in the same class with Ricci form ρg ≡ 0. Hence g is Ricci flat,
so scalar flat. SFK surfaces are ASD, hence SD with the reversed orientation.

Theorem 3.5. The smooth 4-manifold CP2# CP2 does not admit any LCF nor SD met-
rics.

Proof. Since τ = 0, the argument in the proof of Theorem 3.3 is again valid for
this 4-manifold.

A similar argument also excludes the manifolds kCP2# kCP2 for any k > 0.
Since we used it multiple times, it is convenient to sum up the idea of the proof
as follows.

Theorem 3.6. Let M be a compact, oriented 4-manifold with signature τ = 0, then we
have the following.

1. A metric g on M is SD iff LCF.
2. If M is simply connected but not diffeomorphic to S4 then it does not admit any

LCF or SD metric.

Theorem 3.7. The smooth 4-manifold S1 × S1 × S1 × S1 = T2 × T2 is LCF hence SD.

Proof. Since T4 is a quotient of R2 by Z2 isometries, it is flat hence LCF and
consequently SD.

The second assertion is alternatively seen as follows: The product of flat met-
rics on the components is scalar-flat-Kähler (SFK). So by the Theorem 2.1 it is
ASD.

As a by-product of local conformal flatness we also compute τ(T4) = 0.
Bieberbach’s theorem states that the only compact manifolds that admit flat met-
rics are Tn and its finite quotients. Hence these are the only (globally) conformally
flat manifolds. Since these are already classified, the phrase “conformally flat” is
usually used in place of LCF in the literature. Before checking another possible
basic product in dimension four, let us look at its universal cover.

Theorem 3.8. The smooth 4-manifold S2 × R2 is LCF hence SD.

Proof. Since S2 × R is diffeomorphic to R3 − {0}, the inherited standart metric is
of constant (positive) sectional curvature. A constant sectional curvature space
times R is LCF.

Next result indicates that the above manifold can not have isometries that give
S2 × T2 as the quotient.
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Theorem 3.9. The smooth 4-manifold S2 × T2 is neither LCF nor SD.

Proof. Because of the antipodal orientation reversing isometry of the 2-sphere, we
have the signature τ(S2 × T2) = 0. Hence this is LCF iff SD. Secondly, since this
manifold has Abelian infinite fundamental group Z

2, if it admits a LCF metric
then applying Kuiper’s second theorem (Theorem 2.5) it should have universal
cover R4 or R × S3. Since the universal cover is S2 × R2 this gives a contradiction.
In general this argument applies to Sp × Tq for p, q ≥ 2.

This manifold is particularly interesting since even though it is not LCF, the
following infimum of all the possible Weyl energies on the manifold,

W(M) := inf

{

∫

M
|Wg|2g ωg : g ∈ MM

}

called the Weyl invariant is zero, where Wg is the conformally invariant type (1, 3)
Weyl tensor, MM is the space of smooth metrics. See [Kob] for a proof. Hence
the infimum is not attained.

One can easily compute the Euler characteristic of S1 × S3 to be χ = 0, since
the S3 component is an oriented closed 3-manifold hence χ(S3) = 0. Since there
is no second homology, the signature τ = 0. In this case it is a candidate of a
manifold which may admit LCF metrics. This turns out to be the case as follows.

Theorem 3.10. The 4-manifold S1 × S3 with its standard product metric is LCF and
hence SD.

Proof. The proof is adapted from [JV]. Locally we can think this as R × S3, where
R is the flat line with gR = dx ⊗ dx and S3 has the round metric of curvature +1.
Rm denoting the Riemann curvature tensor, 7 is the Kulkarni-Nomizu product
which is commutative,

RmR×S3 = RmR + RmS3

= 0 + 1
2 gS3 7 gS3

= 1
2 (gS3 + dx2) 7 (gS3 − dx2)

= 1
2 gR×S3 7 (gS3 − dx2)

= Ψ(1
2 (gS3 − dx2))

where by the definition of the product dx2
7 dx2 = 0, and Ψ : S2(T∗M) −→ Ker b

is defined by Ψ(h) = h 7 gM. Here, Ker b is the space of curvature-like tensors
as in the introduction. The decomposition Ker b = W ⊕ Ψ(S2

0(T
∗M)) ⊕ Ψ(Rg)

implies that the Weyl tensor vanishes.

9



Theorem 3.11. The 4-manifolds S2 × Σg with their standard product metric is LCF and
hence SD for g ≥ 2.

Proof. We adapt from [Bes]. Suppose we have the constant sectional curvature +1
metric on S2 and −1 metric on Σg. Then we have the following descriptions

RmS2 =
1

2
gS2 7 gS2 and RmΣg =

−1

2
gΣg 7 gΣg

for the Riemann curvature tensors.

RmS2×Σg
= RmS2 + RmΣg

= 1
2 (gS2 7 gS2 − gΣg 7 gΣg)

= 1
2 (gS2 + gΣg)7 (gS2 − gΣg)

= 1
2 gS2×Σg

7 (gS2 − gΣg)

= Ψ(1
2 (gS2 − gΣg)).

Being in the image of Ψ, the Weyl tensor vanishes. Alternatively, starting with the
Kähler metrics, one obtains a scalar-flat-Kähler (SFK) metric on the product. Now
apply Theorem 2.1 with both orientations.

A Appendix

Using Gauss-Bonnet, and signature formula techniques we can also prove the
following.

Theorem A.1. If a 4-manifold admits a Kähler-Einstein(KE) metric which is also locally
conformally flat(LCF) then its Euler characteristic χ = 0.

Proof. Recall the pointwise identity of Corollary 2.2 for Kähler metrics

|W+|2 =
s2

24
.

For Einstein metrics, by definition the trace-free Ricci tensor
◦

Ric= 0. Plugging
these two identities into the Gauss-Bonnet formula (1) we get

8π2χ(M) = 2 ‖W+‖2 + ‖W−‖2.

Locally conformally flatness implies W± = 0, hence χ = 0 by above.
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As an application we can prove the following non-existence result.

Theorem A.2. The product metric on the 4-manifolds Σg × Σh, product of surfaces of
genus g, h ≥ 2 is not a LCF nor SD metric.

Proof. First of all, Σg × Σh admits a Kähler-Einstein metric. One can see this
through different ways. One is to use Aubin/Yau theorem, since c1 < 0, a surface
of general type, there exists a unique KE metric on this complex surface. An-
other way is to think in terms of product metrics. If you have the hyperbolic −1
curvature Kähler metrics on both components, the product metric is Kählerian.
Besides that, the product of Einstein metrics with common cosmological constant
is again Einstein. Combining the two, we obtain a Kähler-Einstein metric on the
manifold. If the manifold admits a LCF metric as well, then Theorem A.1 implies
that χ = 0, however χ = (2− 2g)(2− 2h) which is a contradiction. So the product
of two hyperbolic metrics on Σg × Σh is not LCF.

To analyze SD structure we need to find the signature of the manifold. A two
dimensional oriented surfaces of genus g always has an orientation reversing dif-
feomorphism (involution) Rg. One can construct this by using a mirror reflection
or reflection through a point after arranging the holes symmetrically. Then (Rg, I)
is going to be an orientation reversing diffeomorphism of the 4-manifold. Since
the Hirzebruch signature is diffeomorphism invariant and changing the orienta-
tion changes its sign, we have τ = −τ hence τ(Σg × Σh) = 0. Alternatively one
can compute the intersection matrix as gh(−H4)⊕ H2 and hence the characteristic
polynomial (λ2 − 1)2gh(λ2 − 1). (Another approach might be exploiting only the
parity of the intersection form and use Rokhlin’s theorem of divisibility of the
signature by 8 in the case of even intersection forms to obtain at least some of
the cases.) If the product metric is a SD metric on the manifold then it is LCF by
Theorem 3.6, which is already violated.

Existence of LCF metrics on the product Σg × Σh of surfaces of genus g ≥ 2
and h ≥ 1 still remains as an open problem.

Michigan State University, East Lansing, MI 48824, USA
E-mail address : kalafat@math.msu.edu
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