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Abstract

We show that if a compact complex surface admits a locally conformally flat
metric, then it cannot contain a smooth rational curve of odd self-intersection. In
particular, the surface has to be minimal. Moreover, we give a list of possibilities of
such surfaces.

1 Introduction

A Riemannian n-manifold (M, g) is called locally conformally flat (LCF) if M has an open
cover such that for any open set U of the cover we have a strictly positive smooth function
f : U → R+ and a diffeomorphism h : U −→ Rn such that the pull-back of the Euclidean
metric gEuc on Rn is conformally related to the restriction of g on U; i.e.

h∗gEuc = f g.

In this paper, we are specifically interested in dimension four and in the compact case.
In particular, we would like to see which compact complex surfaces can possibly admit
an LCF metric. For this purpose we start with proving the following result.

Theorem 2.2. If a compact complex surface admits a locally conformally flat Riemannian metric,
then it cannot contain a smooth rational curve of odd self-intersection.

Since a non-minimal complex surface by definition contains a smooth rational curve CP1

of self-intersection −1, we have the following consequence:

1

http://arxiv.org/abs/1305.2608v3


Corollary 1.1. If a compact complex surface admits a locally conformally flat Riemannian metric,
then it has to be minimal.

We apply this corollary to the Enriques–Kodaira classification of surfaces ([BHPV], p.244),
and eliminate some of the surfaces appearing on the list (see Lemma 3.4). We also ana-
lyze the case of elliptic fibrations separately in Theorem 4.2. As a consequence of these
results, we obtain the following list of possibilities:

Theorem 1.2. If a compact complex surface admits a locally conformally flat Riemannian metric,
then it must be one of the following surfaces:

1. a Hopf surface, or an Inoue surface with vanishing second Betti number,

2. a minimal ruled surface fibered over a curve Σg of genus g ≥ 2,

3. a minimal elliptic fibration with no singular, but possibly with multiple fibers over a genus
g ≥ 1 curve,

4. a minimal torus which is not elliptic,

5. a non-simply-connected minimal surface of general type of Euler characteristic χ ≥ 4 which
does not admit a Bergmann metric.

The spaces that admit a Bergmann metric are of the form CH2/G, i.e. holomorphic
quotient of the complex hyperbolic plane. The interested reader may wish to consult the
references [Bo, M, C] for examples of these quotients.

For the final case we conjecture that indeed no surface of general type admits an LCF
metric. One of the intuitions behind this conjecture is that these surfaces have a large
fundamental group, and thus, it seems unlikely that they can be mapped into the group
conformal transformations through the holonomy representation, see section §2 for the
background. The first author obtained a partial result in this direction in [K2]. Namely,
for product surfaces of general type, if the holonomy representation is discrete and
faithful, then there exists no LCF metric. On the other hand, holonomy representation
can be non-discrete for this type of metrics. This is contrary to the hyperbolic manifold
case. It is a difficult task to handle the non-discrete representations.

The Weyl invariant of a compact smooth n-manifold M is defined by

W(M) := inf
g∈Met(M)

∫

M
|Wg|

n/2 dµg
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where Wg is the Weyl curvature tensor of the metric g. If n ≥ 3, then any LCF metric
g has Wg ≡ 0 [Bes]; therefore, this invariant turns out to be zero for manifolds with
an LCF metric. If M is a compact quotient of the complex hyperbolic space, then its
natural Bergmann metric attains the minimum by [ABKS] using a result of LeBrun [Le].
This implies that the signature is strictly positive. Consequently, they obtain W(M) =
48π2τ > 0, and this prevents the possibility for these surfaces to admit an LCF metric.

On the other hand, the Weyl energy of a product metric gProd on the product of curves
Σg × Σh of genera g and h can be computed as

W(gProd) :=
∫

Σg×Σh

|WgProd
|2dµ =

128π2

3
(1 − g)(1 − h) +

2

3

∫

Σg×Σh

(κg − κh)
2 dµ,

where κg, κh are the Gauss curvatures of each factor [Kob]. This implies that, for g, h ≥ 2,
the standard product metric (for which κg = κh = const.), which is Kähler-Einstein, has
the minimum Weyl energy among all product metrics. Note that the Weyl energy of this
Kähler-Einstein metric is strictly positive. However, currently it is not known whether the
Weyl energy goes below this level for other (non-product) metrics on Σg × Σh, g, h ≥ 2.

A final remark about the Weyl invariant is that W(Σ1 × Σg) = 0 for any genus g. This
was first observed by Kobayashi in [Kob], as a consequence of his result which states
that the Weyl invariant is zero for manifolds with a free and differentiable circle action.
We know that Σ1 × Σg admits an LCF metric (the flat metric) when g = 1, but it does
not admit an LCF metric when g = 0. For higher genera g ≥ 2, even though the Weyl
invariant W(Σ1 × Σg) is zero (because of the existence of an S1-action induced from the
one on the first factor), it is not known whether or not this manifold admits an LCF
metric.

The outline of the paper is as follows: In Section §2 we recall the developing map
construction for LCF manifolds, and prove the first main result. In §3 we obtain a list by
analyzing the Kodaira-Enriques classification of compact complex surfaces. In Section
§4 we deal with the elliptic fibration case separately. In §5 we give information about the
converse case. Finally in §6 we relate our classification to that for the Hermitian case.
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2 Developing map of a locally conformally flat manifold

Before defining the developing map of a locally conformally flat manifold, let us offer
some motivation for the definition. We would like to modify the definition of local con-
formal flatness so that one uses charts and transition maps rather than the Riemannian
metric directly. The key theorem in this case is due to Liouville and Gehring (see [Ge]
p.389 or for a recent survey [Ho]), which states that for n ≥ 3 and any open set U ⊂ Rn,
any C1 conformal map ϕ : U → Rn is the restriction of a Möbius transformation of Sn.
Möbius transformations Möb(Sn) = Conf(Sn) is the group of conformal diffeomorphisms
of the round n-sphere, and they are generated by inversions in round spheres. So, they
constitute a group of real analytic diffeomorphisms of the real analytic manifold Sn by
the Liouville-Gehring theorem. Alternatively, they are the restrictions of the full group
of isometries of the hyperbolic space Ln+1 to its ideal boundary Sn, described as fol-
lows. Consider Rn+2 with its Lorentzian metric g1 = dx2

1 + · · · + dx2
n+1 − dx2

n+2. Let
O(n + 1, 1) be the group of linear maps that preserve the Lorentzian metric. We embed
the two mentioned spaces into Rn+2 as follows:

L
n+1 = {x ∈ R

n+2 : |x|21 = −1 and xn+2 > 0}

Sn = {x ∈ R
n+2 : |x|21 = 0 and xn+2 = 1},

i.e. L is the upper part of the hyperboloid asymptotic to the light cone and Sn is the
unit sphere in the upper light cone which is the boundary of the Klein model K of the
hyperbolic space, see the Figure 5 in [CFKP]. The restriction of the Lorentzian metric
on Ln+1 and Sn gives hyperbolic and round metrics which are positive definite and of
constant curvature −1 and 1, respectively. Consider

Isom(Ln+1) = O+(n + 1, 1) := {A ∈ O(n + 1, 1) : A preserves L}.

We define an isomorphism,

Ψ : Isom(Ln+1) −̃→ Möb(Sn), a 7→ Ψa

by the following procedure. Take a ∈ O+(n + 1, 1) so that for y = (y1 · · · yn+1) and
a(y, 1) = (a1y, a2y) ∈ R

n+1 × R
+ i.e. a2 := πn+2 ◦ a ◦ π1···n+1 define

Ψa : Sn → Sn by Ψa(y, 1) :=

(
a1y

a2y
, 1

)

This is a conformal map on the sphere since it is the map y 7→ (a1y, a2y), which is
an isometry of the sphere on its image, followed by rescaling via the factor (a2y)−1.
So whenever we define a locally conformally flat structure, instead of local conformal
diffeomorphisms into Rn, we map into Sn.
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Definition 2.1. A locally conformally flat structure on a smooth manifold M is a smooth
atlas {(Ui, hi)i∈I} where the maps hi : Ui → Sn are diffeomorphisms onto their images and the
transition maps hi ◦ h−1

j ∈ Möb(Sn) after restriction.

Now start with one of the flattening (or rounding) maps h1 : U1 → Sn. Let α be a
path in M beginning in U1. We would like to analytically continue h1 along this path.
Proceeding inductively, on a component of α∩Ui the analytic continuation of h1 is a shift
away from hi, i.e. of the form Γ ◦ hi for some Γ ∈ Möb(Sn). This way h1 is analytically
continued along every path of M starting at a point in U1. Therefore, there is a global

analytic continuation D of h1 defined on the universal cover M̃ since it is defined as a
quotient space of paths in M. D is called the developing map of the locally conformally
flat space.

M̃
D

−→ Sn

p ↓
M

If one starts with a different flattening open subset instead of U1, one gets another
developing map which differs from D by a composition with a Möbius transformation.
Hence, the developing map is defined uniquely up to a composition with an element in
Möb(Sn). This uniqueness property has the following consequence. Given any covering
transformation T of the universal covering, there is a unique element g ∈ Möb(Sn) such
that

D ◦ T = g ◦ D.

This correspondence defines a homomorphism

ρ : π1(M) −→ Möb(Sn)

called the holonomy representation of M. Conversely, starting with a pair (D, ρ) where ρ

is a representation of the fundamental group into Möbius transformations and D is any

ρ-equivariant local diffeomorphism of M̃ into Sn, one can construct the corresponding

LCF structure on M by pulling back the standart LCF structure from Sn to M̃ via D, and
then projecting it down.

Theorem 2.2. If a compact complex surface admits a locally conformally flat Riemannian metric,
then it cannot contain a rational curve of odd self-intersection.

Proof. Let f : S2 → M be a smoothly embedded complex sphere in a compact complex
surface M. Since the fundamental group of the sphere is trivial we have f∗π1(S

2) ⊂

p∗π1(M̃). So by the general lifting lemma ([Mu] p.478), we can lift the embedding to
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a continuous map f̃ : S2 → M̃ into the universal cover, at any chosen base point in a
unique way. Since p is a local diffeomorphism and f is an embedding, the map f̃ is also
an embedding locally, hence an immersion. We can conclude that the self-intersection
numbers in M and the universal cover

I( f , f ) = I( f̃ , f̃ )

are the same since there is a local diffeomorphism and the intersection numbers can
be computed through the local deformations of the submanifolds. To be precise, self-
intersection number is obtained by perturbing a copy of the sphere in a neighborhood
to make it transverse to itself and counting the signed number of points according to
the orientation. Since the covering map is a local diffeomorphism, it becomes a bijection
when restricted to a lifting of the sphere. Since at the same time it is a local diffeomor-
phism in a neighborhood of a point, by compactness, passing to a finite cover one can
introduce a metric and find a uniform ǫ neighborhood on which the covering map is a
diffeomorphism. If the perturbed sphere goes beyond this neighborhood, then we just
push it inside without changing the intersection points.

As the second step, we note that the lifted sphere is also a holomorphic one. So that
the adjunction formula [DK]

2g(C)− 2 = [C]2 − c1(S)[C] (1)

for a smooth connected curve C of a complex surface S is applicable. Since the de-
veloping map is obtained through local flattening conformal diffeomorphisms, it is an
immersion. The formula (1) has no analogue in the image because the Chern class is not
defined. On the other hand the Stiefel-Whitney class is defined. Since w2(S

4) = 0, by
naturality of characteristic classes we have

w2(TM̃) = w2(D
∗TS4) = D∗w2(TS4) = 0.

If one takes the (mod 2) reduction of both sides of (1) applied to C = f̃ (S2) and S = M̃,

and inserting c1(M̃) ≡ w2(M̃) ≡ 0 (mod 2), one gets

0 = [ f̃ (S2)]2 (mod 2).

In particular, there cannot be a (−1)-self-intersecting smooth rational curve in M, and
thus, M must be minimal.

Remark 2.3. There are actually immersions T∗S2 → R4 which realize the sphere as a Lagrangian
submanifold with respect to the standart symplectic structures of both sides. Note the parity of
the self-intersection of the sphere. See [A] for details.
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3 Kodaira–Enriques classification

In this section we give a list of complex surfaces which may possibly admit a locally
conformally flat metric. The idea is to go through the classes of surfaces in the Kodaira–
Enriques classification. According to the classification ([BHPV], p.244), the following is
the complete list of minimal surfaces:

1. Minimal rational surfaces

2. Minimal surfaces of class VII

3. Ruled surfaces of genus g ≥ 1

4. Enriques surfaces

5. Bi-elliptic surfaces

6. Primary or secondary Kodaira surfaces

7. K3-surfaces

8. Tori

9. Minimal properly elliptic surfaces

10. Minimal surfaces of general type

The assumption that the surface admit an LCF metric helps us to eliminate some of
these possibilities by close inspection. First of all, we make the following general remark:
A compact complex surface admitting an LCF metric has to be of signature τ = 0 and
non-simply-connected. The fact that the signature τ is zero follows from the Hirzebruch
Signature formula.

Theorem 3.1 (Hirzebruch). Let (M, g) be an oriented Riemannian manifold. Then the signa-
ture of the manfold can be expressed in terms of curvature quantities as follows.

τ =
1

12π2

∫

M
|W+|2 − |W−|2 dµ.
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Here W± are the self-dual and anti-self-dual parts of the Weyl tensor. This formula is a
combination of two results. One of them is the signature theorem of Hirzebruch which
expresses the signature of an oriented 4-manifold as a multiple of the integral of its first
Pontrjagin class over the manifold. See [Hir] for a reference. Another result is that using
Chern-Weil theory one can express the characteristic classes using curvature quantities.
See [Ch]. Since W = 0 for any LCF metric [Bes], we see that τ has to be zero.

Furthermore, we will make use of the following theorems of Kuiper.

Theorem 3.2 ([Kui]). Let (Mn, g) be a simply connected, LCF n-manifold of class C1. Then
there is a conformal immersion f : M → Sn. If in addition M is compact, then this map is a
conformal diffeomorphism.

Theorem 3.3 ([Kui2]). Universal cover of a compact, LCF space with an infinite Abelian fun-
damental group must be Rn or R × Sn−1.

According to the first theorem, the 4-sphere S4 is the only compact, simply- connected
4-manifold with an LCF metric. Since S4 is not a complex manifold, a compact complex
surface with an LCF metric cannot be simply connected. Now, let us analyze the above
list.

The first case is a minimal rational surface. A surface is called rational if and only
if it is birationally equivalent to the complex projective plane. The possibilities for the
minimal models are the complex projective plane CP2 and the Hirzebruch surfaces Fn =
P(O ⊕OCP1

(n)) for n = 0, 2, 3 . . . (see [BHPV]). The Hirzebruch surfaces fall into two

distinct smooth topological types S2 × S2 and CP2♯CP2 determined by parity of n (see
[H]). Both of these types are simply-connected, as is CP2. Thus, they cannot admit an
LCF metric by Kuiper’s theorem.

The second item in the list is the minimal surfaces of class VII. These surfaces are
characterized by their Kodaira dimension κ = −∞ and Betti number b1 = 1 (therefore,
they are not simply-connected). Furthermore their Chern numbers satisfy c2

1 ≤ 0 and
c2 ≥ 0. Combining with the identity

c2
1 = 2χ + 3τ = 2χ

for LCF complex surfaces, we reach the conclusion that χ = 0. Since b1 = 1, we can
compute the second Betti number as follows,

0 = χ = 2 − 2b1 + b2 = b2.

Class VII minimal surfaces of vanishing second Betti number are classified by Bogo-
molov in [Bo1, Bo2]: Hopf surfaces and Inoue surfaces are the only two possibilities.

8



A surface is called a Hopf surface if its universal cover is biholomorphic to C
2 − 0. The

other possibility are Inoue surfaces with b2 = 0. Their universal cover is biholomorphic to
C × H, i.e. complex line times the hyperbolic disk.

The third is the case of ruled surfaces of genus g ≥ 1. Such a surface admits a ruling,
i.e. a locally trivial, holomorphic fibration over a smooth non-rational curve with fiber
CP1 and structural group PGL(2, C). This can be thought of as a projectivization of a
complex rank 2-bundle over a Riemann surface. Now, we claim that the base cannot be
a torus: suppose that the base is a torus. Then, topologically, we have the following fiber
bundle

S2 −→ M −→ T2.

The homotopy exact sequence for this bundle involves the following terms:

· · · → π3T2 → π2S2 → π2M → π2T2 → · · ·

Here, the terms at the two ends are zero since the universal cover of torus is contractible.
Therefore, we have the isomorphism π2M ≈ π2S2 ≈ Z. Thus, the second homotopy

group of the universal cover M̃ is non-trivial. Taking a look at the remaining terms of
the homotopy exact sequence on the right we have

· · · → π1S2 → π1M → π1T2 → π0S2 → · · ·

Again the end terms vanish, and we have the isomorphism π1M ≈ π1T2 ≈ Z ⊕ Z.
This is an infinite abelian group. However, due to the second theorem of Kuiper that we
stated above, since the fundamental group is infinite abelian, the universal cover must be
R

4 or R × S3 if there is any LCF metric. Ours have non-trivial second homotopy group,
so it is none of these. Hence the genus g = 1 case yields a contradiction.

The fourth and seventh possibilities are eliminated, because the signatures of En-
riques and K3 surfaces are nonzero: τ(E) = −8 and τ(K3) = −16.

Finally, let us consider surfaces of general type. We know that the Chern numbers
c2

1 and c2 are strictly positive for these surfaces. Recall the formula for the holomorphic
Euler characteristic: 12χh = c2

1 + c2. Since this is a non-zero positive integer multiple of
12, we have c2

1 + c2 ≥ 12. Recall the identity c2
1 = 2c2 + 3τ for complex surfaces. Adding

c2 to both sides and applying the previous inequality we obtain c2 + τ ≥ 4. Since the
signature τ is zero for LCF surfaces, we get c2 = χ ≥ 4.

Now, we can list the remaining cases as follows.

Lemma 3.4. If a compact complex surface (M, J) admits a locally conformally flat Riemannian
metric, then it can be either

9



1. a Hopf surface, or an Inoue surface with b2 = 0,

2. a ruled surface fibered over a Riemann surface Σg of genus g ≥ 2,

3. a bi-elliptic surface,

4. a primary or secondary Kodaira surface,

5. a torus,

6. a minimal properly elliptic surface, or

7. a non-simply-connected minimal surface of general type of Euler characteristic χ ≥ 4.

4 Elliptic Surfaces

In the case of elliptic surfaces one can actually make a more refined classification. We
start with the following classification theorem stated in [GS] p.314, a summary of re-
search done by various people. See the references therein.

Theorem 4.1. A relatively minimal elliptic surface with nonzero Euler characteristic is diffeo-
morphic to E(n, g)p1 ···pk

for exactly one choice of the integers involved for

1 ≤ n, 0 ≤ g, k, 2 ≤ p1 · · · ≤ pk and k 6= 1 if (n, g) = (1, 0).

Here, relatively minimal means that the fibers do not contain any sphere of self intersec-
tion −1. This is a generalization of being minimal. E(1) is defined to be the surface
CP2♯ 9 CP2 considered with its elliptic fibration. Then taking its fiber sum with itself n-
times, one gets E(n). Furthermore taking the fiber sum with the trivial fibration Σ1 × Σg

over the Riemann surface of genus g, one gets the space E(n, g). Finally the subindices
pi denotes the multiplicity of a logarithmic transformation. Log transform is a standard
way to introduce a multiple fiber. Using this classification theorem we can prove our
result.

Theorem 4.2. If an elliptic surface admits a locally conformally flat metric then it is minimal,
and it has vanishing Euler characteristic and signature. Moreover it has to be a torus bundle over
a curve, outside the multiple fibers.

10



Proof. The signature of E(n, g)p1 ···pk
is computed to be τ = −8n, see [GS]. If we assume

that there exists an LCF metric, then signature has to vanish and n = 0. Applying the
Theorem 4.1 we reach the conclusion that the Euler characteristic χ = 0. But this is the
Euler characteristics of the fiber bundle: χ = χ(fiber)× χ(base) = 0. Since a cusp fiber
contributes by 2 and a fishtail fiber contributes by 1 to the Euler characteristic, there are
no singular fibers.

Logarithmic tranformation is a standard way to introduce a multiple fiber. Topologically,
picking up a lattitute l of a smooth fiber, multiplying with the disc in the base, replacing
the solid torus by another solid torus which has multiple Seifert fibered central circle is
basically what this operation means. Note that this does not change the Euler character-
istic. It changes the homology class of the fiber.

An elliptic surface fibered over a rational curve is either a product or a Hopf surface,
see [BHPV] p.196. Since the product does not admit LCF metric, and the Hopf surface is
already counted in the first case, we can assume that the genus g ≥ 1. In the list we gave
in the previous section (Lemma 3.4), the cases between 3-6 are elliptic except some tori.
These are the cases to which the results of this section apply. This completes the proof
of Theorem 1.2.

5 Converse

In this section we will mention the surfaces in the list of Lemma 3.4 that are known to
admit LCF metrics. See [K1] for a recent survey and [Bes] for references.

Case 1: Among the Hopf surfaces, the primary ones, i.e. the ones homeomorphic to S1 × S3

admit LCF metrics. The reason is locally it is a product of a line with a constant
curvature space. Note that if a complex surface is homeomorphic to S1 × S3 then it
is diffeomorphic to it by a result of Kodaira [Ko]. Among the secondary type Hopf
surfaces, the ones obtained by Zp-action on the second component, result in a lens

space product S1 × L(p, q), hence they admit an LCF metric because locally it is as
the previous case.

Case 2: Among the ruled surfaces mentioned, the trivial products are LCF. The product
metric on CP1 × Σg admits LCF metric for g ≥ 2.

Case 5: All tori admit flat metrics.

11



6 The Hermitian case

In this section we consider the Hermitian locally conformally flat structures on complex
surfaces. This means that we have an additional compatibility condition, i.e. J-invariance
relation g(JX, JY) = g(X, Y) for all vectors X, Y. This case is analyzed by M. Pontecorvo
in [Pon], and also stated without proof in [B]. We have one of the following three cases.

1. A Hopf surface, i.e. finitely covered by a complex surface C2∗/Z (diffeomorphic
to S1 × S3) with its standard metric of [Va].

2. A flat CP1 bundle over a Riemann surface Σg of genus g ≥ 2. Its metric is locally
the product of constant ±1 curvature metrics.

3. A complex torus or a hyperelliptic surface with flat metrics.

In this classification the cases 1,2 and 3 fall into the cases of 1, 2 and 3 of our Theorem
1.2 respectively.
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