arXiv:1308.2263v2 [math.DG] 20 May 2016

Algebraic topology of G, manifolds

Selman Akbulut Mustafa Kalafat

May 24, 2016

Abstract

In this paper we give a survey of various results about the topology of ori-
ented Grassmannian bundles related to the exceptional Lie group G,. Some of
these results are new. We give self-contained proofs here. One often encoun-
ters these spaces when studying submanifolds of manifolds with calibrated
geometries. For the sake of completeness we decided to collect them here
in a self-contained way to be easily accessible for future usage in calibrated
geometry. As an application we deduce existence of certain special 3 and
4 dimensional submanifolds of G, manifolds with special properties, which
appear in the first named author’s work with S. Salur about G, dualities.

1 Introduction

Recall that G, C SO(7) is the 14-dimensional exceptional Lie group defined as
the automorphisms of the imaginary octonions im(Q) = R” preserving the cross
product operation R” x R” — R” (e.g. [HL], [Br], [AS1], [ASz2])). Octonions are the
elements of the 8 dimensional division algebra O = H @ I[H = R® where H are
the quaternions, O is generated by (1,7, ,k,1,1i,1j,lk). The cross product operation
x on im(0) is induced from the octonion multiplication on O by u x v = im(3.u).
We say an oriented 7-manifold M’ has a G, structure if its SO(7)- tangent frame
bundle lifts to a Go-bundle by the canonical fibration:

G, — SO(7) — RIP7 — BG, — BSO(7).
Alternatively G, can be defined by the special 3-frames in IR as follows:
Gy = {(u1,uz,u3) € (R7)? | (ui, uj) = dj, (ur x upg,uz) =0},
or as linear automorphisms of R” preserving a certain 3-form ¢y € Q7 (R?)
Gy ={A€GL(7,R) | A%po = o }

where ¢ = 123 + 145 1 o167 | 246 _ o257 _ o347 _ 3% vyith /K = dx’ A dx/ A dxk.

By using this last definition, a G, structure on M’ can be defined as a 3-
form ¢ € O%(M?) such that at each p € M the pair (T,(M), ¢(p)) is (pointwise)
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isomorphic to (To(IR”), ¢g). This condition is equivalent to reducing the tangent
frame bundle of a (not necessarily oriented) 7-manifold M from GL(7,R) to G,.

The form ¢ induces an orientation y € (O7(M) on M, a metric § = (,), by
(u,v) = liu(@) Niv(@) N @]/6u, and ¢ also defines a cross product operation
TM x TM — TM: (14,v) — u X v =u Xy 0 by ¢(u,v,w) = (u X v, w).

A manifold with G, structure (M7, @) is called a G, manifold (or an integrable
G, structure) if at each point p € M there is an open chart (U,p) — (R7,0) on
which ¢ equals to ¢y up to second order term, i.e. on the image of the open set
U we can write ¢(x) = @o + O(|x|?). The condition that (M, ¢) be a G, manifold
is equivalent to ¢ being parallel under the induced metric connection V%(¢) = 0,
which turns out to be equivalent to the condition dp = d*¢ = 0.

Let G,"IR" denote the Grassmannian manifold or oriented k-planes in R". We
call L € G R7 an associative 3-plane if ¢|; = vol(L). A 3-dimensional submanifold
Y C (M, ¢) is called associative if ¢|y = vol(Y). An equivalent condition of a
submanifold Y? to be associative is that x|y = 0, where x = x, € Q*(M, TM) is
the tangent bundle valued 3-form defined by (x(u,v,w),z) = *¢(u,v,w,z). This
last identity implies a very useful property: x assigns to every 3-plane L C TM
an orthogonal vector x|, € L+ C TM. We also have:

o(u,v,w) + |x(u,0,w) > = |u Ao Aw|.

x(u,v,w) = —ux (vxw)— (u,0)w+ (u,w)o

We call L € G5 (R”) an Harvey-Lawson 3-plane (HL plane in short) if ¢|; = 0.
We call S € G (R”) a coassociative 4-plane if ¢|s = 0. A 4-dimensional submani-
fold X* C (M, ¢) is called coassociative if ¢|x = 0. A manifold pair (X*, Y?) such
that Y3 C X* C (M7, ¢) is called a Harvey-Lawson pair if the ¢ = 0 on the restric-
tion of the fibers of the normal bundle v(X)|y of X C (M, ¢). The Grassmannians
G5 (R”) and G; (R”) have the following natural submanifolds

ASSy = {L € G (R”) | ¢|r = 0}
ASS: ={L € G (R”) | 9. = vol(L)}
ASS_ ={L e Gf(R") | ¢|r = —vol(L)}

COASS = {S € G} (R?) | p|s = 0}

When there is no danger of confusion, we will abbreviate ASS, by ASS. Note
that there is a natural identification ASS ~ COASS given by L — L+, and also

ASS. ~ Gy /SO(4)
ASSO ~ Gz/SO(3)

From these descriptions it follows that ASSy is a sphere bundle over ASS.

$3 — ASSy — ASS.



These special Grassmann manifolds sit in G5 (IR”) as level sets of the function
®:Gf(R7) - R

givenby L = u Av Aw — @o(u,v,w), where {1, v, w} is an orthonormal basis of
L.

We have ®1(0) = ASSy and @ !(41) = ASS., since ¢y is calibrating 3-form
|po(L)| < 1. In this way G5 (R) appears as the double of the D*-disk bundle
over ASS. ® is a Bott-Morse function. So that ASS+ becomes two critical sub-
manifolds with indices 0 and 4 respectively ([Z]).

Figure 1: The map @ : G5 (R7) — R

These Grassmannians occur as the fibers of some bundles over 7-manifolds
with G, structure (M7, ), providing a useful tool studying deformations of asso-
ciative submanifolds [[AS2]. Next we summarize some of the constructions from
[AS1]. Let Pgo(7y — M be frame bundle of the tangent bundle T(M) — M of any

closed smooth oriented 7-manifold M, and let M — M be the bundle oriented
3-planes in TM, which is defined by the identification [p, L] = [pg, ¢~ 'L] € M:

G5 (R7) = M =Psp7)(M) Xs50(7) G5 (R7) = M.

Let { — G5 (R7), and v = &t — G/ (R”) be the universal R® bundle, and its
dual R* bundle, respectively. Therefore, Hom(¢,v) = &* @v — G+(]R7) is the
tangent bundle TG; (R”). ¢, v extend fiberwise to give bundles & — M,V - M
respectively. If E* be the dual of &, then Hom(E,V) = E* @V — M is the bundle
of vertical vectors T?(M) of T(M) — M, i.e. the tangents to the fibers of 7.

When (M7, ¢) is a manifold with G, structure, similarly to the construction
above, we can form the following subbundles of M — M

ASSy — ASS. = Pg (M) xg, ASS: — M

ASSy — ASSy = ]PGZ(M) X G, ASSy — M

where IP¢, (M) is the G, frame bundle of the tangent bundle of (M, ¢). In particu-
lar ASS =P, (M)/SO(4) — Pg,(M)/Gy = M. As in the previous section, the
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restriction of the universal bundles ¢, v = ¢+ — GJ (R”) induce 3 and 4 plane
bundles & — ASS and V — ASS. Also we have the similar map L — ¢(L)

d:M—R

with ®71(0) = ASSy and & !(+1) = ASS.. Fiberwise this is just the map
previously described on G5 (R”), it is the bundle version of the map described in
Figure @ So we have disjointly embedded pair of codimension 4-submanifolds
ASS. C M, which are separated by a codimension zero submanifold ASSy C M.

Any embedding of a 3-manifold f : Y3 < M, by its tangential Gauss map,
lifts to an embedding fr : Y < M such that the pull-backs fi& = T(Y) and
3V = v(Y) are the tangent and normal bundles of Y. In particular, if f is an
embedding of an associative submanifold , then the image of fr lands in ASS

M > ASSy, ASS.
fr 4

y LM

Similarly any embedding of a 4-manifold f : X* < M, by its normal Gauss map,
induces an embedding fy : X < M, such that f{,E = v(X) and f{V = T(X) are
the normal and tangent bundles of X*.

If L = A®(E) — M is the determinant (real) line bundle. By the discussion
above x maps every oriented 3-plane in T (M) to its 4-dimensional complemen-
tary subspace, so x gives a bundle map I. — V over M, which is a section of
IL* ® V — M. Since E is oriented I is trivial, so x actually gives a section

X =Xxp € QUM,V)

ASS is the zeros of this section. Assogiativg submanifolds Y C M are character-
ized by the condition x|y = 0, where Y C M is the canonical lifting of Y.

ASS is the universal space parameterizing associative submanifolds of M. In
particular, if f : Y < M, is the lifting of an associative submanifold, by pulling

back we see that the principal SO(4) bundle P(V) — ]\71(,, induces an SO(4)-
bundle P(Y) — Y, and gives the following vector bundles via the representations:

v(Y) oy gyAt
T(Y) : x> qgxqg ! (1)

where [q,A] € SO(4) = SU(2) x SU(2)/Z,, v =v(Y) and T(Y) = A4+ (v). Here
we use quaternionic notation R* = Q and R> = im(Q). Also we can identify T*Y
with TY by the induced canonical metric coming from G, structure. From above
we have the action T*Y ® v — v inducing actions A*(T*Y) @ v — v.

In the next section we survey relevant results from algebraic topology of these
spaces. Most of these results are elementary, folklore or already known (e.g. [Bol,
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[Mill, [SZ]]), but some results and the application in Section §3] are new. There are
also other applications e.g. [KU]. For the sake of completeness we decided to
collect them here in a self contained way to be easily accessible for future usage
in calibrated geometry.

Acknowledgements. This work was partially supported by NSF (National
Science Foundation) grant DMS-1065879, FRG-1065827 and Tiibitak (Turkish sci-
ence and research council) grant #114F320. Thanks to I. Unal for some useful
discussions.

2 Algebraic topology of Grassmann bundles

Here compute cohomology groups of various Grassmann bundles. To this end
we first start with the following calculations.

Lemma The homology of the Grassmann manifold G IR” of oriented 2-planes is
given by the following table:

H.(G,R”;Z) = (Z,0,7Z,0,2,0,7Z,0,Z,0,Z).

This result is obtained by some elementary computations on various spectral
sequences. After this, by computing the torsion and using the Gysin sequence of
some special fibrations we get the following.

Theorem 7 The homology of the oriented Grassmann manifold G R” is given by:

H.(GIR7;Z) = (Z,0,22,0,Z 3 Z,Z,7,,0,Z B Z,75,0,0,Z).

Also the cup product structure of the cohomology can be computed as follows.
Theorem The cohomology ring of GJR” is given by:

H*(G{R”;Z) = Z[x,y]/ (x*, 6 — y°, x* — v, xy — yx) © Za[z, 1]/ (22,12, 2t + t2)
where the degrees of the generators are |x| = |y| =4,|z| =3 and |t| =7.

As a by product, along the way we compute the homology of a Stiefel manifold.
Theorem The homology of the Stiefel manifold V3R’ is given by:

H.(»3R7;Z) = (Z,0,0,0,Z,7,,0,0,0,7Z,,0,7Z,0,0,0,Z).

Then by combining two different fibrations we can compute the homology of the
Lie group G, and compute its cohomology ring as well.

Theorem 17, The homology groups of the Lie group Gy are given as follows:
H.(Gy;Z) = (Z,0,0,Z,0,7Z,,0,0,7Z,,0,0,7Z,0,0, Z).
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Theorem The cohomology ring of the Lie group G, can be described as follows.
H*(Gy;, Z) = Agz[x3,x11] ® Az, (X6, X9]/ (X6X9)
where the degrees of the generators are |xi| = k.
In part z1 we deal with topological computations on the Grassmannian, in
partzz2 we compute the cup product structure. Finally, in part[z3we analyze the

space G, and compute its cohomology ring, and then in [Z7] compute cohomology
rings of of certain bundles associated to G, manifolds.

2.1 Homology of Grassmannians

The aim of this section is to compute some integral homology groups of the ori-
ented real Grassmannian G; R”. We will use various forms of the Serre spectral
sequence of a fiber bundle with various coefficients. As a warm up, let us recall
the homology and cohomology of the basic spaces. Starting from SOj3, using its
identification with RIP?> and a combination of Poincaré duality with the universal
coefficients theorem (UCT) one easily computes its homology groups as

H.(SO3;Z) = (Z,25,0,Z).
H.(803;2Z) = (22,22, 22, Z>).

Now, consider the Stiefel manifold V3R’ which is defined to be the space of or-
thonormal 3-frames in R”. By the Stiefel fibrations (e.g. [Hal) this is a 7-3-1=3
connected space. Since the dimension is even the fourth homotopy group is Z by
Stiefel [Sti] so 7to1234(V3RR”) = (0,0,0,0,Z). This notation expresses the homotopy
groups of the space up to level 4. See [Wh) [Pa] for higher homotopy. Sending a
3-frame to the oriented 3-plane, which it spans, gives us the fibration

SO; — V3R” — GJR’. (2)
Using the related homotopy exact sequence (HES) and homotopy groups
01234 (S03) = (0,Z2,0,Z, Z5)
Mo1234 (G5 R7) = (0,0,22,0,Z & Z).

Our next aim is to compute some homology groups for the Grassmannian. From
above by the Hurewicz isomorphisms

Ho2(GiR7) = (Z,0,25).
The Poincaré polynomial of G’ IR’ is known to be
porrr(t) =1+ 214 28 4 112, (3)

See vol.ITI, pp.494-496 for computations also [GMM]. For further homol-
ogy computations, we will consult to the spectral sequences and the Gysin se-
quence. We will abbreviate G = G5 R” and V = V3R’ frequently in what follows.
Our first assertion is the following Lemma.
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Lemma 2.1. For the oriented Grassmann manifold we have H3(G5 R”; Z) = 0.

Proof. We consider the homological Serre spectral sequence with Z-coefficients
associated to the fiber bundle @), properties of which is given as follows [Sal.

E} . = Hpy(G; Hy(SO5; Z))
Evg = Fpa/Fp-1941
where F,; are abelian groups forming a filtration satisfying
0=F 1,41 C--CF,_11 CF,0=Hu(V;2Z).
The differentials are bidegree (—n,n — 1) maps
d":E,, — EZ_n’qu(n_l).

Some of the terms appear in the following table. Note that

Table 1: Homological Serre spectral sequence for Gy R?, second page.

3

2
1 04
0

E? H3(G;Z)

E? | = H1(G; H(SO5;Z)) = H1(G; Z) = Hy ® Zy & Tor(Hy; Z5) = 0.
We have immediate convergence for the E%,o term so that

H3(G;Z) = E5g = --- = ESy = F30/Fo1 = H3(V;Z)/Fo1 = 0.

Another result on the Grassmannian is the following.

Lemma 2.2. The homology of the oriented Grassmann manifold G5 R” is given by:

H.(G,R”;Z) = (2,0,7Z,0,2,0,Z,0,Z,0,Z).

Proof. Consider the fibration
§' =50, — WR” — G/ R. (1)
The homology of the Stiefel manifold is well-known (e.g. [Hal), it is given by:
H.(WL,R7;Z) = (Z,0,0,0,0,7Z5,0,0,0,0,0,Z) (5)
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Since V,R” is 7 —2 — 1 = 4 connected, homotopy exact sequence of the above
fibration immediately gives 77p12(G; R”) = (0,0, Z). The homological Serre spec-
tral sequence reads as follows.

E; .= Hy(GSR7; Hy(S'; Z))
Epg = Fpa/Ep-1011
where F, ; are abelian groups of the filtration
O0=F 1,41 C---CF,11 CFpo= Hn(V2R7,'Z).

We first fill out the limiting page of the sequence as in the Table 3, except the terms
in quotation marks, which we do not use, however the reader can compute them
after secondary steps and written here for recording purposes only. Vanishing of
the homology of V,R” and the filtrations easily handle this far.

Table 2: The limiting page of Homological Serre spectral sequence for Gy R”.

110(0({0]0[Z3}0]0]|0|0
E*® 0 00 010010
012 5 6 7 8

’

0
10

O OO

0|0
3 4
Next we fill out the second page. Keep in mind that in the following the entries
of a column are identical. Columns till the second one follows from the homo-
topy groups. The third column is zero since we have the immediate convergence
E%,O = ng’o because of the differential. The fourth column is the outcome of the
isomorphism
Z +—Ej, : di,

Since the domain and image group have to converge to zero in the next page,
this map is both injective and surjective. The sixth column and on are the con-
sequences of the universal coefficients theorem and the Poincaré duality. Fifth
column is the remaining one. Again, because of the immediate convergence
E%,l = ng’l the E%,l term has to vanish, so is this column. A row of Table

Table 3: The second page.

11Z40Z|0|(2Z2|0|Z|0|Z|0|Z
E* 0 01Z|0]z]| |Z]|0|Z]|0|Z
01 23 4567 8910
determines the homology of G, IR’ by its definition. O

Now we can prove our main Lemma.
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Lemma 2.3. The torsion subgroup of Hy(G3 R7; Z) is trivial.

Proof. Since the free part F5 of H5(G;Z) is trivial [, we can compute the torsion
part of Hy(G;Z) which is denoted by T, using cohomology as follows.

H>(G;Z) = Hom(Hs, Z) ® Ext(Hy, Z) = 0 Ty = Ty

To figure out this group we will work with two new fibrations.

54

|

$? —~ S(E3R7) = Eg —2~ G R7

|

Gy R7

Here E3R7 denotes the tautological bundle over GJ R”. The horizontal fibration is
clear, which is obtained by removing the zero section. From there one can obtain
the vertical fibration with the following procedure. A point in G, R” represents a
2- plane which is contained in (7 — 2)(3 — 2) = 4 parameter of 3-planes. Since we
take the orientations into consideration we obtain spheres rather than projective
spaces. One may think in terms of the oriented flag variety F§3(R7) with its
projection maps. See [Har]. Now, consider the Gysin exact sequence of the
vertical fibration.

.o — HY(GIR7;Z) 25 H (G R7; Z) T, H>(Ey;Z) — H'(GSR%;Z) — - --

Since we proved that the odd homology of the grassmannian G R’ is zero in
Lemma 22} this implies that the middle term H>(Ey; Z) vanishes.
Next consider the Gysin sequence of the horizontal fibration.

o — HA(GIR%; Z) =5 H3(GIR7; Z2) s HO(Ep; Z) —» - --

Since H(G; R7; Z) is torsion and H; (G5 R”; Z) is zero we have H*(G{ R7; Z) =
0. Together with the vanishing of H>(Ey;Z) we obtain our result

H°(G{R”;Z) = 0.
H
Since by 3 the fourth Betti number of G; R is 2, this Lemma implies the following.

Corollary 2.4. For the Grassmann manifold we have Hy(GiR”;Z) = Z H Z.



The results so far helps us to consume most of the homology of our Grassmann
manifold. The homology at the levels 7 and above are easily deduced from the Ext
universal coefficients theorem and Poincaré duality. Finally using (3) in addition
yields that the homology in the levels 5 and 6 are solely torsion, isomorphic and
denoted by Ts. The rest of this section is devoted to compute this group.

In order to compute this torsion this time we need some results on some Stiefel
manifolds.

Theorem 2.5. The homology of the Stiefel manifold V3R” is computed as,
H.(W3R7;Z) = (Z,0,0,0,Z,7,,0,0,0,Z,,0,7,0,0,0,Z).

Proof. We will be using the homological Serre spectral sequence related to the
following new fibration.
s* — R — LR,

This is obtained by projecting onto the first two vectors of the frame and the third
one has unit independency in R°. Defining groups are as follows.

E; . := Hp(VoR7; H;S*)

o __
Ep,q - Fp,q/Fp—LqH

where F, ; are abelian groups of the filtration
0= F_1,n+1 c---C Fn—l,l - Fn,O = Hn(V3R7,'Z).

Merely knowing the homology of V,IR” as in (5) one can construct the second
page of the spectral sequence. Because of the abundance of zeros and freeness

Table 4: Homological Serre spectral sequence for V3IR” with Z-coefficients.

41 Z Zy Z

Z Zy Z
012345 67891011

3
2
1
0

of Z we have the immediate convergence. Isomorphism of the groups in the
filtration gives the triviality of the homology of V3R” at the levels 1 to 3, 6 to 8, 10
and 12 to 14 since their diagonal consist entirely of zeros. Now, to determine the
homology at the 4th level start at F_; 5 = 0. Since ES‘;l = Fya/F_15 = Z implying
that Fy4 ~ Z. Next

Fi3/Foa = Ef% = = Ey = Fyg/F31 =0
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implying the isomorphisms
Z =~ F0,4 ~ F1,3 I~ F2,2 ~ F3,1 ~ F4,0 = H4(V3]R7,'Z).

In an exactly similar way the other two nontrivial groups on the 4th row projects
onto the homology at levels 9 and 15 isomorphically, hence these are also deter-
mined. In the 5th level starting at F_; 4 = 0, the vanishing of the diagonal from
top till ED) = Faa / F3 5 forces the vanishing of the filtration till and including Fj ;.
Now the limiting information Z, = Eg}; = F50/Fs,1 determines the 5th homology.
Similarly the 11th level can be handled. O

Lemma 2.6. For the Grassmann manifold we have the following.
Hs(G{R”;Z) = Hs(G{R; Z) = Z,.

Proof. We saw that these two groups are solely torsion and isomorphic to one an-
other and denoted both of them by Ts. We will be working on the cohomological
Serre spectral sequence with integer coefficients related to the fiber bundle (2),
definition and limit of which is given as follows [Sal.

EY' .= HY(G; HY(SO5; Z))
EPT — pra jpptla-1

where FP4 are abelian groups forming a filtration satisfying
H"V;Z)=F"" > il 5 ... 5 b=l =,
The differentials are of bidegree (1, —n + 1) so satisfying

d, : EPA — ppma—(n=1),

Table 5: Cohomological Serre spectral sequence for G R?, second page.

0|Ts| Ts]
Tso | 237 7,
0]0]o0
Z,| 0
5 6 7 8 9 10 11

S = N W

E>

Our first claim is that F/® & Z; for this sequence. Using the Theorem 5] and the
filtration we obtain the isomorphisms

Z; =Hs ~ HY(V;R;Z) =FOY 2 F1P 2 ... 2 F73 (6)
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Table 6: Limiting page. Underlined terms are hypothetical.

Kerdz
Kerds Z3 | 0

S = N W

Es Z,

6 7 8 9 10 11

provided by the vanishing of the limiting entries E%", - - - , E%". Since we have
Kerd, = E = 73 /F%?

the only two possibilities 0 or Z; are remaining for Kerd,. After this point let us
assume that Ts = 0 to raise a contradiction. Table [6l shows the limit under this
hypothesis. Note that the underlined terms are purely hypothetical. The two facts

Zy ~F? > F% and Z3=ES?=F82/p!

shows that the group Z3 is way large to be carried by the filtration (). So that
we now know T5 # 0. Next we claim that the torsion group T5 is solely 2-torsion.
To see it use the fundamental theorem of finitely generated abelian groups [DF]
to conclude that this group is a direct sum of Z s for prime numbers p > 2
not necessarily distinct. If one of the p’s is odd than by the partial converse to
Lagrange theorem (or the Sylow’s theorem) there is a subgroup of order p. This
subgroup is contained in the Kerd, otherwise its image would be a group of order
2 which has to divide p. However none of the two possibilities of Kerd, above
covers a subgroup of odd order. So Ts is a direct sum of Z,t’s. These summands
are cyclic, so pick a generator i.e. an element so that the order |a| = p*. Next we
claim that k cannot be greater than or equal to 3. If that is the case to minimize
the kernel d, must be surjective, in any case |Kerd,| > 2K/2 = 2k=1 > 2 causes
a problem. So that k < 2 hence Ts can consist of Z; or Z, summands only.
Computing the following entry of the spectral sequence

E* = H'(G;Z3) = Hom(H7, Z) ® Ext(Hs, Zs) = Ext(Ts, Zs)

and denoting this term by T5, (it counts the number of even ordered irreducible
summands). We note that T5 » cannot hope to survive till infinity since H’(V;Z) =
F% is trivial. So that the map

ds: E?7,,2 = T512 — E;’O,O =27
is injective. Reminding ourselves that Ext(Z4, Zy) = Ext(Zy, Z;) = Z,, the out-

come is Tsp C Z,. Since T5 is nonzero we have Ts, = Z,. Hence Ts is either Z;
or Z4. To raise a contradiction, suppose Ts = Z4. Then Kerd, cannot be zero by
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the cardinality, the remaining possibility is Kerd, ~ Z, by above. Now we pass
to the diagonal on the left. The differential

45 : 24 — 7, 02,

cannot be surjective if it were, that would raise an isomorphism of the cyclic and
Klein 4-group. So that it has a cokernel denoted Cok = E3? of order 2 or 4. Now
concentrating on the 10th diagonal, our assumption

Kel‘dz ~ Zz = EZ63 — F713/F8,2

together with the fact that F/* ~ Z, would imply that F&? = 0. Consequently we
would obtain E&? = 0, a contradiction. O

We can now collect the results of this section to obtain the following.

Theorem 2.7. The homology of the oriented Grassmann manifold G5 R” is computed as,

H.(G{R7;Z) = (Z,0,22,0,Z. & Z,7,7,,0,Z. & Z,75,0,0,Z).

2.2 Cup product structure

In this section we will analyze the cup product structure of the Grassmann man-
ifold GJIR7. We start with the free part. We will be using and interpreting the
computations in [SZ]. Recall ¢ and v denote the canonical (3-plane) bundle and its
orthogonal complement 4-plane bundle on this space respectively. Denoting the
first Pontryagin and Euler classes of these bundles by p = p1(¢) and e = e(v)
actually, we have the following.

Theorem 2.8. The exterior algebra of the Grassmannian manifold G R’ is given as
follows

Hir(GIR?) = R[p,e]/(e*, p° — &, p* — &%, pe —ep) for |p| = |e| = 4.

Proof. Reading the Theorem 7.5 of [SZ]], p + e are generators of the fourth coho-
mology with Poincaré duals 2[ASS.],2[ASS_]. And reading Theorem 7.4, p?, pe
generate the eighth cohomology. The de Rham integral (¢%, [G;R”]) = 2 settles
a non-zero class so that ¢> generates the top cohomology. So that the additive
structure is given as follows.

Hig(GIR') = (p+e,p —e) & (p*, pe) & ().
Among the relations ¢? = p? is given in Section 7,
(pe?, [GSR7)) = (pe(e+p)/2+ pe(e —p)/2,[GTR7])

— L(pe,2[ASS]) + L(pe, —2[ASS])
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Theorem 2.9. The torsion algebra of the Grassmannian manifold G5 R” is given as fol-
lows
Zslx3,x7]/ (X3, %3, x3x7 + x7x3) for |x3| =3, |x7| = 7.

Proof. There is torsion at four levels 3, 6,7, 10 as we have computed in section [Z11
To understand the cup product structure we consult to the cohomological Serre
spectral sequence with Z-coefficients. Table [7] shows the second third page of

Table 7: Cohomological Serre spectral sequence for G5 R”. Second page.

3/ Z 0|0 (Z,|Z%|0 |Z,|Z,|7%|0 |Zy| 0| 2Z
2122|0222y | Z5 |20 | 25| Zy | Z5 | Zo | Zs | O | Zo
110/0[{0|0|O]O0|O|O|O]O|O]|O|O
Ex 0| Z|0| 0 |Z|Z%|0 |Zy|Zy|Z?| 0 |Zy| 0| Z
0 1 2 3 4 5 6 7 8 9 10 11 12

this spectral sequence. In Table [§ for the third page of the spectral sequence, the
arrows are isomorphism as follows. We have H*>(V;Z) = 0 = F%3 from Theorem

implying that the limit term E2 = F>0/F%~! vanishes. To provide that the
only incoming non-zero differential dj : Eg’z — Eg’o must be an isomorphism. The
second one is similar, the vanishing of E2 = F>2/F4! is guaranteed through the
vanishing of H°(V;Z) = F. The last one is achieved through H?(V;Z) = 0 =
%9 hence EZC’,Z =0.

Table 8: Cohomological Serre spectral sequence for G§ R”.

2 Zza Zzax3 Z% 0 ZzﬂX7
1 >~
E3 0| Z1 ZzX3 sz6 ZzX7 0 szlo

O 12 3 4 5 6 7 89 10

Following the techniques in we label the generators as above. Replacing
some generators with their negatives if necessary we may assume dza = x3. Sim-
ilarly we may assume d3(ax3) = x4. Combining with the following relation

d3(ax3) = dzaxs + adxs = x5 + a0 = x3

we replace x¢ = x3. Again assuming d3(ax;) = x10 and applying the following
identity

ds(axy) = dsaxy + adxy; = x3x7
we replace xj9 = x3x7. Since there is no cohomology at the level 9, x3 = 0. One
can alternatively see this as follows. Since H8(V;Z) = 0 = FO8 we have E&* = 0

14



forces that the entry Eg,z = 0. From the isomorphism Eg’z ® Eg’o — Eg,z we get
axe = ax3 = 0. Taking the differential of both sides yields the result.

0= dg,(axg) = dg,(a)x§ + adg(xg) = xg.

Last relation follows from the alternating property of the cup product for odd
dimensions. O

Combining the two results we obtain the following.

Theorem 2.10. The cohomology ring of the Grassmannian manifold G R’ is given as
follows

H*(GIR%Z) = Z[x,y)/ (x*, 2 — y°,x* — 2, xy — yx) ® Za[z, 1]/ (2%, 1, 2t + t2)
where the degrees are |x| = |y| =4,|z| =3 and |t| =7, and x = e(v), y = p1().

Next we would like to see how the submanifold of associative planes sits inside
G5 R” cohomologically. We would like to mention that the space of associative 3-
planes and its Stiefel-Whitney classes are studied to some degree by [BH]. We
have the pullback map induced by the inclusion

H9(ASS;Z) +— HY(G{R%;Z) : i*

which operates at the levels g = 0 - - 8. The nonzero integral cohomology groups
are already computed in Section 10 of [SZ] to be the following.

Z, q=0,4,8

S

We can compute the cohomological ring and the action of the inclusion map on
cohomology as follows.
Theorem 2.11. We have the following facts for the 8-manifold of associative planes.
(a) The cohomology ring structure is given as
H*(ASS;Z) = Z[d]/ (d®) & Z,[c]/ (c*)
where the degrees are |d| =4 and |c| = 3.
(b) The inclusion map i : ASS — G5 R acts on the cohomology rings as follows

-k

i'x=i'y=d, i'z=¢, i"t=0.

Proof. The proof that we will give for the two parts are somehow interrelated.

15



Table 9: Cohomological Serre spectral sequence for G5 R”.

2| Za Zoax3Z.axy Zraxe Zaxg
1 ™~ \
Es=E; 0|71 Zoxs|Zxy Zoxg Z.xg

o 1.2 3 4 5 6 7 8

1. We will employ the fibration S° — G R’ — ASS, see [SZ] for the map.
Corresponding Serre cohomological spectral sequence yields the following
page. Here c appears as the pullback of the Euler class of the tautological
bundle on the Grassmannian which is non-zero. Labeling the generators in
the spectral sequence as in Table [g, the surjective map yields the relation
d3a = x3. Then the isomorphism implies x5 = d3(ax3) = daax & adxs = x3.
This shows that c? is also a nonzero element, hence the generator of its level.
Another relation is obtained through the third map 0 = ds(axy) = x3x4.
Relabel d = xy4.

2. Next we will deduce that the element d? is the generator of its level. And
this will finish the proof on the part (a). To see this let

H*(ASS;Z) = (d) and HB®(ASS;Z) = (s).

Then d?> = as for some & € Z. Also suppose that i*x = Bd and i*y = yd
for some B,y € Z. Recall that additively we have the following generators
at the level 8 of the Grassmannian,

H¥(G{R”;Z) = (piE, prE¢F)

where x = p1E and y = eF. By the Lemma 7.4 of we have the following
integrals
(%, [ASS]) = (xy, [ASS]) =1,

so that these elements map onto the generator d? of the eighth cohomology
of ASS. Elaborating this fact by

s = i'x* = i*(xy)
,32 A2 = ,),2 42
and plugging in yields
s = B?us.

So that B2x = 1. This forces a = 1 hence the assertion.

3. Since now we have obtained s = d?, we have |B| = |y| = 1. We can assume
that B = 1 after a change of sign of the generator 4 if needed. We claim

16



the same for 7 as well, suppose v = —1 to raise a contradiction. Then
i*(x +y) = 0 and this implies

0 = i"(x+y)?
= (& xy+yx+y)
d? + 2i*(xy) + d?

yields the contradiction i* (xy) = —d? to facts of the previous part. Com-
bining these we have i*x = i*y = d.

4. The element ¢ comes naturally as the restriction of the Euler class z of the
tautological vector bundle E3. Finally there is no seventh cohomology to
map onto.

0

2.3 The Lie Group G,

In this section we will compute some invariants of the Lie Group G, which is
defined to be the subgroup of SO; which fixes the 4-form,

*CPO —_ dx4567 + dx2367 + dx2345 + dx1357 _ dx1346 _ dx1256 _ dx1247.

Here the notation dx*%” suggest dx* A dx® A dx® A dx” similarly the others. In
order to work efficiently on G, we will need to use two fibrations first of which is
the following.

SUz — G, —» S° 7)

Since G, consists of orthogonal transformations it preserves the sphere in R’ so
that it has an action on the 6-sphere. This is a transitive action and the stabilizer
of a point on the sphere, preserves its orthogonal complement as well hence a
subgroup of SOg. See a general reference [Br] for further details.

To work with the fibration we need the cohomology of the fiber. One can
obtain the cohomology of the unitary group as an exterior algebra

H*(Uy; Z) = Nz[x1,x3 - Xop-1]

using the complex Stiefel manifolds. Then via the action of the special unitary
group on the unitary one, the fibration SU, — U, — S! helps to drop the first
generator and we get

H*(SU3;Z) = Az[X3,X5] = (Z,0,0,Z,O,Z,0,0,Z).

Now we can work on the cohomological Serre spectral sequence for the first fi-
bration (7) which up to the sixth page looks like in Table Note that the real
dimension of the Lie algebra suz is computed to be 8 so that G, is 14 dimensional.
We can immediately compute from this sequence that there is no cohomology at

17



Table 10: Cohomological Serre spectral sequence for the SU3 fibration of Go.

8[Z Z
7
6
5(Z Z
4 P
3[Z Z
2
1

E,=E 0[Z Z

the levels 1,2,4,7,10,12,13 and there is a Z each at the levels 3,11. This is more or
less the only accessible information to get at first sight from this fibration, this is
mainly because we do not use the actual fibration map which could have been the
trivial product SU; x S° as well. Since this is a fibration the Euler characteristic is
multiplicative and
X(G2) = x(SU3)x(s°) = 0-2

so that this implies bg = bs. At this point using universal coefficients and Poincaré
duality,

H>=H¥=F and H* =H’ = K¢ Ts.
is the ultimate statement for the missing cohomology along with the following
Lemma. Here F5 and T5 denotes the free and torsion part of the fifth homology.

Lemma 2.12. The fifth Betti number bs(Gp) < 1.

Proof. From the filtration one can show that
H(Gy, Z) =~ F*® ~ ES® = Z/Tm d2°.

A similar computation can be done to see H(G,; Z) ~ Z/Im dy”. Since we know
that these two are isomorphic, as a by product one can easily see the equality
Imd® = Imdd”. O

To recover the missing information we consult to the second fibration (g). To
analyze this we need the homology of the fiber. We use the fibration

SO3 —s SO, —» §° (8)

and applying the homological spectral sequence as in the Table @1 yields the
homology,
H.(SO4 Z) = (Z,2,,0,Z%,7,,0,Z).

18



Table 11: Homological Serre spectral sequence for the SOs3 fibration of SOj.

3l zl|z,] 0] Z

2l 0l01]0]0
127,10 |0 ]2
E2=E® 0|Z|Z|0]| Z
0 1 2 3

Here one should use universal coefficients to compute the homology at level 4 and
to show it is free at level 3. Then computing the Euler characteristic x(SO;) =
x(503)x(S?) to be zero yields bz = 2, hence the result.

The second fibration of G, is as follows.

SOy — Gy —> ASS (9)

To see this, note that the group G, C SO7 naturally acts on IR”, leaves the as-
sociative form invariant. So that an associative (three) plane is sent to another
associative plane under G, action, hence the set ASS of associative planes stays
invariant. The stabilizer of this action is the orthogonal transformations of R”
which leaves an associative 3-plane invariant, and hence acts orthogonally in the
complement yielding SO4. According to the rule

Table 12: Homological Serre spectral sequence for the SOy fibration of Go.

6|Z|0|Zy| 0 |Z|Zy| 0|0 |2Zs
5/0(0/0|0|0]0|0]O0|O
4175 0|2y 22|22 2Z2|Zy| 0 |2,
3|z*|0|z3| 0 |Zz*>|Z5| 0 |0|2Z?
2/0(0[{0|0|0|0O|O0]|O0]O
1| Z20 | Zy |22 | 22| Zy | Z2 | O | Z
E2 0|Z|01Z,| 0 |Z|Zy| 0]|0]|2Z
0 1 2 3 4 5 6 7 8

E; . = Hp(ASS; Hy(SOy; Z))

Table @2 shows the starting page for the homological Serre spectral sequence for
this fibration. The following is our first main assertion.

Lemma 2.13. The free part Fs is zero hence bs(G,) = 0.

19



Proof. We actually claim that the line p + g = 9 at infinity is totally zero. To see
this consider the filtration

O0=F 10=Fo=-=FksC - CFyCFkj)=FKy=Hy(GyZ)=F.

Over the line at infinity the only possibly nonzero terms are Eg’) and Eg} which
both are subgroups of Z,. Since lower terms at infinity are zero we have ES, =
Fs4. So that Fs4 is a subgroup of a free group and a subgroup of Z, at the same
time. So it has to vanish. Then if you follow up zeros till (8,1) you can do the
same argument to see that Fg; = 0, hence the result. O

This gives us a chance to say something about the torsion.

Lemma 2.14. The torsion part Ts = Z, for some m > 2 for the Lie group Gy. In
particular it is nonzero.

Proof. Recall from Lemma that we have
H(Gy;Z) = Z/Tmdy® = F5s + Ts = Ts.

Assume that dg’s is surjective or Ts = 0 to raise a contradiction. In that case
passing to the second (homological) sequence where Hg(Gy; Z) = 0 and the p +
q = 8 line disappears in the limit. In particular Eg; = 0. The only differential

from or hitting (5,3) are dEZ')B and dg,l' d%ﬁi should better be surjective and dg,l

better be an embedding to bleed E2 , = Z3 to nothing since these two are the only
two chances. The second assertion means

E§,1 = Ker d§,1 =0.

But now consider the unpleasant situation for Ei4 = Z, which has to bleed into
death. Only possibly nontrivial differential is the following

4, rd 4
dg; i Eg1 — Eyg
which emanates from zero as we computed, a contradiction. O
We will also be using the following Lemma.

Lemma 2.15. We have that ES = Egyy = 0 for the limits. Moreover E2 , = E3 = 0.
Hence only possibly nonzero terms on the line p +q = 8 at infinity are E) and Eg’;.

Proof. Since we know that E2) = 0, the differential
d5q: E5y — Ejg

has to be injective hence an isomorphism, enough to kill the entry (2, 6). Moreover
this implies also that Eg/l = Egﬁ = 0 on both parts. Since Ez%,o = Z is free, so is
Ego = Fs0/F71. Considering Fgo = Hg(Gp; Z) = Ts = Z, Eg) also torsion hence
trivial. O
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Finally we can now handle the torsion piece.
Lemma 2.16. The torsion part Ts = Z; for the Lie group Go.

Proof. All of the terms from E t111 and including E Vanish. On the filtration
this implies that

0=F i 19=FRgs=F;=he¢=FsCFsC - Cko=Hy(GyZ) =Ts =Zy

the left hand terms vanish and Ef} ~ Fy4. From the starting entry of the spec-
tral sequence we have EP, 22, hence Fy4 <75 as well. So we have only two
possibilities for Fy 4. We will analyze these two cases separately.

Case 1: Assume Fy4 = Z,. Then all differentials related to the (4,4) terms are zero
for its survival. In particular the differential

4 . r4 4
d8,1 : E8,1 E4,4

is zero. That implies the convergence Es 1 = Eg1 = 0. Since from Lemma

215 we have 0 = E36 = E§ 56 so that the differential ds Eg’l — ES 26 1S
zero. Consequently the only nonzero differential emanatmg from the entry
(8,1) is the

dg,l: 81—ZZ—>E53—K (10)

which has to be injective to provide Eg’; = 0. Here, by definition we take
K := KerdZ, so that this kernel has a subgroup of order two, in particular it

is nontrivial. In the following we will show that on the other end K # Z3 as
well. To see this observe that the differential

A3 E30<NZ — E3,<Z;

has to be zero. If it does not then it would mean that Eg,o ~ Z. But this term
vanishes ultimately by Lemma and there is no chance to vanish since
the differential can no longer be injective. The outgoing differential dgA :
Z, — Z is zero. So the only possibly nontrivial differential concerning
(3,4) is

dis B33 =75 — E34 =17

has to be surjective to kill it since H7(Gy;Z) = 0 so that it disappears at
infinity. To be surjective the kernel K cannot be everything. So we reach at
the only possibility that K ~ Z,. But the differential at ([I0) was injective
now becomes an isomorphism. That kills the term and we get E5; = 0. That
tells the result as follows

Zy =F4s=F3=Fpy=F1=Fo=2Zu.
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Case 2: Assume Fy4 = 0. Then Eﬁ = F4/F35 = 0. Then the only possibly nontriv-
ial differential incoming or emanating from EZ, 418

4 . pa 4 _
dgq1:Egy — Eyy =2

which has to be surjective. So Eg,l = Z,, implying that Eg,l = Z as well
and the map
dg,l : Eg,l — Zz — Eg,3

is zero. Letting K := Ker d%s then we have Ez°; = K. The elements on the
filtration become
Fs3=Feo = F7n = Fgo = Zm,

so that
K=E33 =F3/Fi4 =F3=2Zn.

We also know that K < Z% so that Z,, < Z% and it m > 2 implies that m = 2.
U
Accumulating the results of this section we get the following.
Theorem 2.17. The homology groups of the Lie group Gy are as follows.
H.(Gy;Z) = (Z,0,0,Z,0,7Z,,0,0,7Z,,0,0,7,0,0,Z).

At this point we are in a position to understand the cup product structure of
G, as follows.

Theorem 2.18. The cohomology ring of the Lie group Gy can be described as follows.
H*(G2; Z) = Azlx3, x11] & Az, [xe, x9]/ (x6x9)
where the degrees are |xi| = k.

Proof. Consider Table [13] that presents all possible generators. =~ The maps are
multiplication by 2 which are injective and so that x5, xg disappears. Since the
image is zero, the product

03 o £03 0,6

is zero which is the same as cup product upto a sign. So that this implies x3 = 0.

Likewise one can compute x2 = x3 = x3, = 0. Since

EQ® = H(S% H3(SU3; Z)) ~ H(SU3; Z)
the product
0 87— £

is just multiplication of coefficients. Hence the multiplication x3- : ES’S — ES’S is
an isomorphism. In particular sends generators to generators hence x3 - x1; = x14
if the signs are arranged suitably. The only missing relation

x3x11 = (—1)¥Haqqx3

comes by the properties of the cup product. O
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Table 13: Cohomological Serre spectral sequence for the SU3 fibration of Go.

8 | Zxg Z.X14
7 X2
6
5| Zxs Z.x11
4 X2 O\
3| Zx3 ZXxg
2 \
1

Ez = E6 0| Z1 ZX(,

0 12 3 45 6

2.4 Classifying Space

In this section we will compute the classifying space BG;, of the group G,. We
will be using the results of A. Borel. See [Mi] for a recent exposition. We
start with the free algebra. A theorem of Borel tells us the following. Let G be a
compact, connected Lie group and R be Z or a field k of characteristic p. Assume
H.(G) is torsion free if R = Z, or is p-torsion free if R = k. Then there are
universally transgressive elements x; € H"i(G; R) such that

H*(G;R) = Alx1---x;] where |x;| = n; odd,
H*(BG;R) = Rly; - - -y;] where y; = t(x;).

Here 7 : H*(BG) — H*!(G) is the transgression map of the fiber bundle G —
EG — BG. This is a co-analogue of the connecting homomorphism of the homo-
topy exact sequence of a fiber bundle. A corollary of this theorem is that if H,(G)
is p-torsion free, then H,(BG) is also p-torsion free. In our case this means that
BG; has no p-torsion for p > 3. At this point, taking a Zj3 coefficient cohomology
ring kills the (2) torsion and captures the free piece by universal coefficients the-
orem. Starting with the free part of G, as we computed in Theorem we have
generators at the levels 3 and 11. Transgression increases the degree by one and
applying the above we have

H*(BGa; Z3) = Z3[ya, y12)-

For the torsion part, by the application of the above theorems, it is well-known
that the cohomology with Z, coefficients is

H*(Gp; Z5) = Zz[Xg]/(X%) ® Alxs] where x5 = quxg,

H*(Bcz,' Zz) = Zz[y4,y6,y10] where Yo = Sq2y4 and Y7 = Sq3y4 = Sq1y6.
Now, comparing the generators, in this Z; coefficient ring, y4 comes from the free
part, ye, y10 are new so that they are produced by the torsion.
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Theorem 2.19. The cohomology ring of the classifying space of the Lie group Gy is

H*(BGy; Z) = Z[ys, y12] © Z2[Ye, Y10

where the degrees are |yi| = k.

3 Existence of Harvey-Lawson pairs

Here we illustrate an application of the topological results which we have proved
in the previous section. By applying the Leray-Hirsch theorem (e.g. [Sp], [Hal)
Theorem can be generalized from G; R” to the Grassmann bundle 7 : M —
M. This is because of the fact that the Euler and Pontryagin classes x = e(v),
y = p1(¢) are restrictions of the Euler and Pontryagin classes ¢(V), p1(E) of the
corresponding universal bundles over M (cohomological extension property).

Theorem 3.1. H*(M; Q) is an H*(M;Q) module generated by e(V) and p,(Z). In
other words the map

aQx+b@y— 1 (a)Ue(V)+ 7°(b) Upi(E)
gives an isomorphism:
H*(M) ®z H*G5 (R7) — H*(M).

Next comes a corollary to the existence of Harvey-Lawson pairs. Recall that
a manifold pair Y3 € X* C (M7, ¢) in a manifold with G,-structure is called a
Harvey-Lawson pair if the three form vanishes on the normal bundle of X* when
restricted to Y°. Note that these type of submanifolds are related to the Mirror-

duality of [AS3]] and [AS4].

Corollary 3.2. Let X* < (M, @) be any embedding of a closed smooth 4-manifold into
a manifold with G, structure satisfying the property (p1(vX), [X]) # *e[X], where e[X]
is the Euler characteristic. After a small isotopy of X C M, we can find a nonempty
closed smooth 3-dimensional submanifold Y3 C X* such that (X,Y) is a HL pair.

Proof. Consider the map ¥ : Im(X,M) x X — M given by ¥(f,x) = fn(x),
where Im(X, M) denotes the space of embeddings of X into M. fy assigns the
normal plane to f(X) C M at the image of a point x € X. By transversality
(e.g. [GP]) we can find a nearby isotopic copy f of any embedding, such that
fn : X — M is transverse to the submanifolds ASS_ LI ASS, LI ASS,. Since
p1(vX) £e(TX) # 0, fy meets both ASS. since their Poincaré duals are p1(2) +
e(V). Hence Y3 := f~1(ASSy) # 0, and by definition (X,Y) is a HL-pair. O

Example 3.3. By this corollary one can produce examples of HL pairs. Standard embed-
dings of S*, S? x S? (after stabilization) into R” can be extended to an embedding into
any manifold with Gy structure via a coordinate diffeomorphism. Since these have trivial
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Figure 2: The map ®:G;R” —+ R

normal bundle and nontrivial Euler characteristic, they satisfy the hypothesis of the corol-
lary and can be isotoped to a HL pair. Similarly an orientable closed surface L of genus
g is embedded into R> with trivial normal bundle. So that L4 X %, can be embedded into
any manifold with Gy structure for ¢ # 1,h # 1 and isotoped to a HL pair.
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