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Abstract

We prove a nonexistence theorem for product type manifolds. In par-
ticular we show that the 4-manifold Σg × Σh does not admit any locally
conformally flat metric arising from discrete and faithful representations
for g ≥ 2 and h ≥ 1.
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1 Introduction

A Riemannian n-manifold (M, g) is called locally conformally flat (LCF) if any
point has a neighborhood which is conformally diffeomorphic to an open
subset of Rn. If n ≥ 3 any conformal map f : U −→ Rn from an open
subset U ⊂ Rn is the restriction of a Möbius transformation which is defined
to be a composition of inversions on the n-sphere. The set of all Möbius
transformations is the conformal transformations of the round sphere. The
orientation preserving subset is denoted by Möb+(Sn) or Conf+(Sn). In lower
dimensions the orientation preserving conformal transformation group can
also be realized as the matrix group PSL(2, F) where the field F = R, C or
H for n = 1, 2 or 3. Conformal diffeomorphisms of the n-sphere extends
as isometries of the hyperbolic (n+1)-ball that it bounds. Moreover this is a
bijective correspondence and we denote the corresponding isometry group
by Isom+

H
n+1. See e.g. [KK16] for the details. A correct way to understand

this isometry group is to realize the hyperbolic space in the Lorentzian Rn+2
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space as the upper sheet of −1 radius hyperboloid. Isometries of the Lorentz
metric is denoted by O(n + 1, 1) which is a subgroup of the general linear
group GL(n + 2, R). The full Lorentz group has 4 connected components.
Considering the orientation preserving subset, i.e. of determinant +1 we
get the subgroup SO(n + 1, 1) which has 2 connected components. Among
these take the transformations which leaves the upper hyperboloid invariant.
This is the component which the identity matrix belongs to and denoted by
SOe(n + 1, 1). See [Hal15] or [Hel01] for more details on the Lorentz group.

Since as a consequence of the Liouville’s theorem the transition maps lie
in a fixed space, one can characterize these spaces in terms of Thurston’s
(G, X) structure terminology in [Thu97]. One can think of an oriented n-
manifold with a locally conformally flat metric as a (Conf+Sn, Sn) geometry.
Moreover, starting from a base point and local conformal chart containing it,
considering it as a map f : U → S

n one can embed it into the n-sphere. One
can embed an overlapping chart by pulling back via the transition Möbius
transformations acting on the sphere. Continuing this process one can locally

embed i.e. globally immerse the universal covering space M̃ of the manifold
into the n-sphere considering it as a set of classes of loops. Each point of
the universal cover represents a loop, and the image of the other endpoint

in Sn defines the map. This immersion map D : M̃ −→ Sn is called the
developing map of the LCF manifold. A developing map differs from another
by a Möbius transformation. Given any covering transformation T of the
universal cover, there is a unique element g ∈ Conf+Sn such that D ◦ T =
g ◦ D. This correspondence defines a homomorphism

ρ : π1(M) −→ Conf+S
n

called the holonomy representation of M.

Now, we are ready to state the main result of our paper.

Theorem 1.1. Let Γ = Γ1 × Γ2 be a product of groups satisfying the following three
conditions.

1. Γ is torsion free.

2. Γ1 and Γ2 are nontrivial.

3. Γ1 is not solvable.

Then there is no discrete and faithful representation such as ρ : Γ −→ SOe(n, 1).
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As an application we can give a partial answer to the open problem we
described in [Kal13].

Theorem 1.2. The product Σg × Σh of closed surfaces of genus g ≥ 2 and h ≥ 1
does not admit any locally conformally flat metric arising from discrete and faithful
representations.

We can also say something on the possible sign of the locally conformally
flat metric on these spaces if exists.

Theorem 1.3. The product Σg × Σh of closed surfaces of genus g, h ≥ 2 does not
admit any locally conformally flat metric of zero or positive scalar curvature type.
Moreover, in the presence of a locally conformally flat metric, the Ricci curvature has
to be strictly negative around some point of the manifold.

In addition to the references that we mentioned here, the reader is advised
to consult to the papers [AK12] and [KA12] for our previous work in the field
of locally conformally flat geometry. In section §2 we prove the main theorem,
and in §3 we analyse the scalar curvature.

Acknowledgements. We thank C. LeBrun, B. Schmidt and J. Morgan for
useful suggestions, Ç. Karakurt for comments. This work is supported by an
RTG grant. Thanks for the Michigan State University for the hospitality.

2 Representations

We start with mentioning a fundamental result, Brouwer fixed-point theorem
[Hat02] which states that any continuous map from the closed n-dimensional
ball to itself has a fixed point. So any isometry of the hypebolic n-space Hn

has at least one fixed point either on it or on its ideal boundary ∂∞Hn. If
you consider the unit ball model, you can think the interior as the hyperbolic
space and the unit sphere as its ideal boundary at infinity as the following
notation suggests.

H
n
= H

n ∪ ∂∞H
n.

A well-known classification of isometries in terms of fixed points can be made
as follows, see [BP92] for a reference. If γ ∈ Isom+

Hn is an isometry, then
there are three mutually exclusive possibilities.

1. It has some fixed point(s) in H
n, i.e. in the interior. In this case it is

called an elliptic isometry.
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2. It has exactly one fixed point and that lies at infinity. In this case it is
called a parabolic isometry.

3. It has exactly two fixed points and those lie at infinity. In this case it is
called a hyperbolic isometry.

A nontrivial isometry can not have three fixed points at infinity, since then
considering the action at boundary it acts on Sn−1 as a Möbiüs transformation
with three fixed points hence the identity. We start with ruling out the first
possibility.

Lemma 2.1. If an isometry γ ∈ ρ(Γ) ⊂ Isom+
Hn is elliptic and if the subgroup

〈γ〉 it generates is discrete, then the order of γ is finite.

Proof. Under the above assumptions suppose the order of γ is infinite. Let
x ∈ Hn be a fixed point of γ. Then since it is a diffeomorphism

γ∗x : TxH
n → TxH

n

is a linear isomorphism preserving the metric, hence an isometry of the tan-
gent space at that point. In the following diagram

Z ≈ 〈γ〉 < Isom+
x H

n dx−→ Isom+TxH
n ≈ SOn

the map dx is injective since in a complete Riemannian manifold, an isome-
try is determined by its value and derivative at a point. So that we have an
infinite subset of a compact Lie group SOn, which should accumulate to say
ϕ ∈ Isom+

Hn. Suppose ϕ /∈ 〈γ〉 otherwise it would obviously be contradic-
tory. Now endow the Lie group Isom+

Hn with a left invariant Riemannian
metric. In this case left multiplication by an element is an isometry. Now via
discreteness pick an ǫ > 0 so that

Bǫ(e) ∩ 〈γ〉 = {e}.

Now we claim that this implies

Bǫ(γ
k) ∩ 〈γ〉 = {γk}.

Otherwise if there is another element from the subgroup in the ball, one can
pull this ball back to the one around the identity and find out another element
there which is pre-avoided.

4



Here comes a useful lemma.

Lemma 2.2. Assume that γ1, γ2 are not elliptic and γ1 ◦ γ2 = γ2 ◦ γ1, then they
are both parabolic or both hyperbolic with common fixed point(s).

Proof. Let γ1 be a parabolic isometry and x ∈ ∂∞Hn be its unique fixed point.
Since

γ1(γ2x) = γ2γ1x = γ2x (1)

it fixes γ2x as well so by uniqueness γ2x = x. So x is also a fixed point of γ2

which is on the boundary. Then by the trichotomy, γ2 can not be elliptic. If
y 6= x is another fixed point of γ2 then

γ2(γ1y) = γ1(γ2y) = γ1y

γ1y is also a fixed point of γ2 which is distinct from the first two, a contradic-
tion. So γ2 does not have a second fixed point hence it is parabolic as well.
Replacing the roles of the two isometries, this shows that γ1 is parabolic if
and only if γ2 is parabolic.

Secondly suppose γ1 is hyperbolic, i.e. two distinct fixed points at infin-
ity. Then the commutativity argument (1) above implies that γ2 permutes the
fixed points of γ1. It is easy to see that this permutation is trivial as follows.
Since there is a unique geodesic joining the fixed points in the hyperbolic
space (the perpendicular half circle to the boundary plane in the upper space
model), this geodesic is sent to itself. In the ball model this is sending topo-
logically a closed interval to itself, so by Brouwer’s theorem there is a fixed
point along. By nonellipticity this fixed point can not lie in the interior hence
the boundary points are fixed.

Now let γ be a parabolic isometry of the hyperbolic n-space. Considering
the upper half space model, we can replace γ with a conjugate so that the
fixed point becomes the point ∞ at infinity. Then we can write this isometry
as follows [BP92].

γ(x, t) = (Ax + b, t) (2)

for some A ∈ SOn−1 and b ∈ Rn − 0 where x ∈ Rn−1 and t ∈ R+. This
means that γ acts on the horizontal (n − 1)-planes by orthogonal transforma-
tions. If you look at the action on the unit ball this means that γ leaves the
(horospheres) spheres tangent to the boundary at the fixed point. We know
that the restriction of the hyperbolic metric to the horospheres or the horizon-
tal planes is a constant multiple of the Euclidean metric, hence this action is
isometric on these invariant spaces. We will need the following lemma.
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Lemma 2.3. Suppose that γ, γ̄ are two orientation preserving isometries of H
n such

that,

1. γ is a parabolic element fixing x.

2. γ̄ is a hyperbolic element fixing x and some other point x̄.

Then the subgroup 〈γ, γ̄〉 < Isom+
Hn is not discrete.

Proof. See Lemma D.3.6. of [BP92]. Working in the upper half space model,
we can go through conjugation for γ̄ to have fixed points 0, ∞ and provide 0
as its common point with γ. Then we can express γ̄ as

γ̄(x, t) = λ(Bx, t) (3)

for some 1 6= λ > 0 and B ∈ SOn−1 where x ∈ Rn−1 and t ∈ R+. One can
think the fixed point at infinity as the point with components x = 0, t = ∞.
Now if we conjugate γ with γ̄ and considering the rigid form (2) of A, and
keeping in mind that the inverse is given by γ̄−1(x, t) = λ−1(B−1x, t), we
have

γ̄−nγγ̄n(x, t) = γ̄−nγ(λnBnx, λnt)

= γ̄−n(AλnBnx + b, λnt)

= (B−n ABnx + λ−nB−nb, t).

Now we will assume that λ > 1 otherwise replace γ̄ with its inverse. Then

γ̄−nγγ̄n(0n−1, 1) = (λ−nB−nb, 1) −→ (0n−1, 1) as n −→ ∞.

The points in this sequence are different from each other and they converge
to (0n−1, 1), consequently the group generated by these two transformations
does not act properly discontinuously.

Now we have a corollary.

Theorem 2.4. If Γ = Γ1 × Γ2 embeds discretely into the isometry group, then we
have exactly one of the two possibilities. Either,

1. The entire ρ(Γ) consists of parabolic elements with common fixed point, or

2. The entire ρ(Γ) consists of hyperbolic elements with common fixed points.
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Proof. Because of the Lemma 2.1 there are no elliptic elements. Let g1 ∈ Γ1

be nontrivial and suppose ρ(g1, 1) be parabolic with fixed point x ∈ ∂∞Hn.
Then (1, g2) commutes with that for any g2 ∈ Γ2. So by Lemma 2.2, ρ(1 × Γ2)
is parabolic, going back and applying the lemma implies ρ(Γ1 × 1) is also
parabolic with the same fixed point. Now taking a general element with
nontrivial components,

ρ(h1, h2) = ρ(h1, 1) ◦ ρ(1, h2)

decomposes into parabolic elements that commute hence have the same fixed
point. Applying Lemma 2.2 again this time to the general element with one
of its factors yields that the general element is also parabolic. The hyperbolic
case is similar.

Reducing to these two cases, next we will prove that both cases are vio-
lated. At this point we assume that Γ = Γ1 × Γ2 where Γi are fundamental
groups of hyperbolic surfaces. We start with the first possibility.

Lemma 2.5. Let ρ : Γ −→ Isom+
Hn be a discrete, faithful representation. Then the

image ρ(Γ) can not be consist of parabolic isometries with same fixed point.

Proof. Consider the upper half space model with entirely parabolic image
with common fixed point ∞. Then considering the normal form 2 and fixing
a horizontal plane (i.e. a horosphere) the whole group ρ(Γ) acts on a (flat)
Euclidean space En−1 again properly discontinuously. Now consider this
quotient,

Mn−1 := E
n−1/ρ(Γ)

which is a complete, flat Riemannian manifold with π1M ≈ ρ(Γ). Since the
curvature is nonnegative, and the manifold is complete by the Soul theorem
[CG72] it has a closed, totally convex, totally geodesic submanifold S called
the soul whose normal bundle is diffeomorphic to the manifold itself. By
Bieberbach theorem since S is flat it is finitely covered by a torus Tk so that it
has a subgroup of finite index isomorphic to Zk.

Next we finally prove the sister theorem for hyperbolic isometries.

Lemma 2.6. Let ρ : Γ −→ Isom+
Hn be a discrete, faithful representation. Then the

image ρ(Γ) can not be consist of hyperbolic isometries with same fixed point.
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Proof. Consider the upper half space model with entirely hyperbolic image
with common fixed points {0, ∞}. For any γ ∈ Γ by 3 say

ρ(γ)(x, t) = λγ(Aγx, t)

for some λγ > 0 and Aγ ∈ SOn−1. Define

ϕ : Γ −→ SOn−1 × R
+ by γ 7→ (Aγ, λγ).

Then for p2 denoting projection onto the second component we have p2 ◦ ϕ :
Γ → R+. Faithfulness imply that ϕ is injective. Then

Kerp2ϕ = {γ ∈ Γ : λγ = 1}.

Since Aλ is linear, the isometry (x, t) 7→ (Aλx, t) fixes the whole axis {0}×R+

hence an elliptic element which is impossible. So this kernel is trivial. Γ em-
beds into the second component R+. But it is nonabelian, again a contradic-
tion.

3 Scalar curvature

In this section we will check the possibilities for the sign of the scalar curva-
ture of metrics on the product 4-manifold. We start with the easiest case.

Theorem 3.1. The product Σg × Σh for g ≥ 2 and h ≥ 1 does not admit any locally
conformally flat metric of zero scalar curvature.

Proof. This is a consequence of the Chern-Gauss-Bonnet formula,

χ(M) =
1

8π2 M

∫
s2

24
−

|
◦

Ric |2

2
+ |W+|

2 + |W−|
2ωg. (4)

The hypothesis imply that χ ≤ 0 and since χ = (2 − 2g)(2 − 2h) ≥ 0 we have
χ = 0. So the manifold is Ricci-flat. This means that all the pieces of the
curvature tensor vanishes, hence the manifold is flat.

Theorem 3.2. The product Σg × Σh for g, h ≥ 2 does not admit any metric of
positive scalar curvature.
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Proof. If an oriented Riemannian manifold has a Riemannian metric of posi-
tive scalar curvature, then all of its Seiberg-Witten invariants vanish [Wit94].
So we need to show that Seiberg-Witten invariant of the product for g, h ≥ 2
is non-zero. The Seiberg-Witten invariants are well defined for a compact,
oriented 4-manifold with the characteristic number b+2 > 1 (in our case b+2 =
2gh + 1) [Tau95]. Product of Kähler metrics is Kähler, hence in particular it
is symplectic. It was shown that there exists a Spinc structure on a closed
symplectic 4-manifold for which the associated Seiberg-Witten invariant is 1

[Tau94]. Thus, the given product manifold can not admit any metric of posi-
tive scalar curvature.

Note that the product of hyperbolic metrics on Σg × Σh has negative scalar
curvature for g, h ≥ 2. However the product manifold does not admit any
metric of negative sectional curvature for g, h ≥ 1 because of the theorem of
Preissmann [Bye70]. On the other hand, the product Σg × Σ1 for g ≥ 2 admits
metrics of constant scalar curvature of any sign by shrinking or expanding
the factors furnished with natural metrics. A result of Schoen and Yau gives
an additional information.

Theorem 3.3. ([SY88]) A compact locally conformally flat Riemannian manifold
with Ricg ≥ 0 has universal cover either conformally equivalent to Sn or isometric to

Rn, R × Sn−1 where Sn and Sn−1 are spheres of constant curvature.

See [Nor93] for a more elementary proof, [Zhu94] for the generalization to
the complete case. In our case for g, h + 1 ≥ 2, the universal cover does
not include a sphere product, also the Euler characteristic is nonzero so the
manifold is not flat. Consequently, this theorem implies that the Ricci curva-
ture has to be strictly negative around some point of the manifolds that we
consider.
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