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Abstract

We exhibit a family of complex manifolds, which has a member at each
odd complex dimension and which has the same cohomology groups as the
complex projective space at that dimension, but not homotopy equivalent to
it. We also analyze the even dimensional analogue.
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1 Introduction

This paper is about various examples of complex manifolds. Conventionally
we define the complex degree 2 hypersurface in the n-dimensional complex
projective space by

V2 := {[Z0 : · · · : Zn] | Z2
0 + · · ·+ Z2

n = 0} ⊂ CPn.

Our main result is as follows.

Theorem 1.1. The algebraic variety V2 ⊂ CP2k has the same cohomology groups as
CP2k−1 but it is not homotopy equivalent to it for k > 1.
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The idea of the proof is to work on the underlying smooth structure of this hy-
persurface. One can show that [Sal89] this complex manifold is the set of totally
isotropic complex 2-dimensional subspaces of Cn+1 and indeed diffeomorphic
to the oriented Grassmannian G+

2 Rn+1, the space of oriented 2-planes in real
n+1-space. In the lower dimension for k=1, V2 is the projective line and G+

2 R3

is a topological sphere, so all these spaces are the same. However if one goes
further in the upper dimensions the spaces start diverging from each other. To
be able o distinguish, furthermore using Serre spectral sequence techniques one
can compute the cohomology ring of the Grassmannian as follows.

Theorem 3.1. The cohomology ring of the Grassmann manifold is the following trun-
cated polynomial ring for which degxm = m.

H∗(G+
2 R

2k+1; Z) ≈ Z[x2, x2k]/〈x
k
2 − 2x2k, x2

2k〉.

One can compare the cohomology rings to distinguish this space with the pro-
jective space or one can use homotopy groups. We give the details in the follow-
ing. To give a complete discussion we also give the cohomology ring in the even
case as follows.

Theorem 4.2. The cohomology ring of the Grassmann manifold is the following trun-
cated polynomial ring for which degxm = m.

H∗(G+
2 R

2k; Z) ≈ Z[x2, x2k−2, y2k−2, x2k]/
〈 x2k−2 + y2k−2 + (−1)kxk−1

2 , 2x2
2k−2 − x2k−2

2

2x2x2k−2 + (−1)kxk
2 , 2y2

2k−2 − x2k−1
2

x2k−2y2k−2 , x2
2k , x2k−1

2

〉

.

There has been a growing interest in Grassmann manifolds because of their
role in analysing submanifolds of smooth manifolds or Riemannian manifolds
with special or exceptional holonomy. This is another reason that makes our
work interesting. Interested reader may consult to [AK16], [Kal18] and [KY21]
for more information.

This paper is organized as follows. In section §2 we deal with the case n=7,
in section §3 we deal with the odd and in section §4 with the even dimensional
analogues.

Acknowledgements. The author would like to thank to his father and family
for their support during the preparation of this paper. This work is partially
supported by the grant ♯114F320 of Tübitak 1.

1Turkish science and research council.
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2 Typical Case

In order to work on the Grassmannian we need the setting of a cohomological
Serre spectral sequence of a fiber bundle. The reader may consult to [Hat04]
or [Sat99] for the fundamental tools in spectral sequences. We will be working
on the following fiber bundle

S
1 → V2R

7 −→ G+
2 R

7 (1)

obtained by sending an ordered orthonormal 2-frame of R7 to the oriented 2-
plane spanned by it. One could work with any ordered 2-frames as well, which
constitutes a space that deformation retracts to our V2R7. Having a simply
connected cell complex as a base is crucial as one can show in (8). Since we want
to understand the cup product structures we are interested in cohomology. In
this case the Serre spectral sequence is defined as

E
p,q
2 := Hp(G; Hq(S1; Z))

which is guaranteed to converge to the following limit

E
p,q
∞ ≈ Fp,q/Fp+1,q−1

where Fp,q is a filtration of abelian groups satisfying,

Hn(V; Z) = F0,n ⊃ F1,n−1 ⊃ · · · ⊃ Fn+1,−1 = 0.

We have a product E
p,q
n ⊗E

p′,q′

n → E
p+p′,q+q′

n on the pages of the spectral sequence
satisfying a Leibniz rule,

dn(ab) = (dna)b + (−1)p+qadnb for a ∈ E
p,q
n , b ∈ E

p′ ,q′

n . (2)

On the second page this product,

E
p,q
2 (≈ Hp(B; Hq(F; Z)))⊗E

p′ ,q′

2 (≈ Hp′(B; Hq′(F; Z))) → E
p+p′,q+q′

2 (≈ Hp+p′(B; Hq+q′(F; Z)))

equals (−1)qp′ times the cup product of the base space B, whose coefficient
product is the cup product of the fiber F. The product for En+1 is derived from
the product for En, and the product for E∞ is derived from the cup product for
E.
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The homology groups of various Grassmann manifolds are computed in
[AK16] using the Serre spectral sequence. We can reinterpret one of the re-
sults in there through Poincaré duality and write the table for the cohomology
of the Grassmann manifold G+

2 R7 of oriented 2-planes in real 7-space as follows,

H∗(G+
2 R

7; Z) = (Z, 0, Z, 0, Z, 0, Z, 0, Z, 0, Z). (3)

Next, we will set up the cohomological Serre spectral sequence of the fiber bun-
dle (1). Imposing the definition and using (3) we obtain the second page as
illustrated in the Table 1.

Table 1: The second page of the cohomological Serre spectral sequence for G+
2 R7.

1 Za 0 Zax2 0 Zax4 0 Zax6 0 Zax8 0 Zax10

E2 0 Z1 0 Zx2 0 Zx4 0 Zx6 0 Zx8 0 Zx10

0 1 2 3 4 5 6 7 8 9 10

❍
❍❍❥

To be able to figure out the cup product structure, we have to find the limit of
this spectral sequence. For this reason, we need information on the total space of
the fiber bundle. The cohomology of the 11-dimensional Stiefel manifold V2R7

is well known (see [Hat02] for a reference) and is given by,

H∗(V2R
7; Z) ≈ Z[x11]/〈x

2
11〉 ⊕ Z2[x6]/〈x

2
6〉 where deg xk = k.

Since the total space at the levels 1,2,3,4,5 and 7,8,9,10 has vanishing cohomology,
the limiting diagonals at these levels are totally zero. Let us figure out the

remaining diagonals. The term E5,1
∞ = 0 automatically since it is the limit of

E5,1
2 = H5(G; Z) = 0. Since,

Z2 = H6(V; Z) = F0,6 ⊃ F1,5 ⊃ · · · ⊃ F5,1 ⊃ F6,0 ⊃ 0

and E0,6
∞ = · · · = E4,2

∞ = 0 from the second page yields Z2 = F1,5 = · · · = F6,0.

Then we can compute the limit E6,0
∞ = F6,0/F7,−1 = Z2.

Next, in a similar fashion starting with Z = H11(V; Z) = F0,11 and using E0,11
∞ =

· · · = E9,2
∞ = 0 from the second page we get Z = F1,10 = · · · = F10,1. Again,

from the second page we have E11,0
∞ = 0. Finally, we can compute the limit
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Table 2: The limiting page of cohomological Serre spectral sequence for G+
2 R7.

1 0 0 0 0 0 0 0 0 0 0 Z

E∞ 0 Z 0 0 0 0 0 Z2 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 10

E10,1
∞ = F10,1/F11,0 = Z. Combining these results we obtain Table 2 as the limit

of the spectral sequence. Now we are ready to compute the ring structure of the

cohomology. Let the symbols a and xk denote generators of the groups E0,1
2 and

Ek,0
2 all of which are isomorphic copies of Z as shown in Table 1. The generators

on the upper row are a times the generators of the lower row since the product

E
0,q
2 × Er,s

2 → E
r,s+q
2 is nothing but multiplication of coefficients. Realize that the

differentials d0,1
2 , d2,1

2 and d6,1
2 , d8,1

2 are isomorphisms. So if we rearrange the sign
of a or x2 to make the relation d2a = x2 hold, we can use the Leibniz rule and
rearrange the sign of x4 to make the following relation hold,

x4 = d2(ax2) = (d2a)x2 ± a(d2x2) = (d2a)x2 = x2
2 (4)

since d2x2 is out of the table. Since the limit E6,0
∞ = Z2, the differential d4,1

2 has to
double the generators. So that again applying the Leibniz rule and rearranging
we impose,

2x6 = d2(ax4) = (d2a)x4 = x2x4 = x3
2. (5)

The remaining differentials are also isomorphisms so we get,

x8 = d2(ax6) = (d2a)x6 = x2x6 (6)

x10 = d2(ax8) = (d2a)x8 = x2x8 = x2
2x6 (7)

So, combining the relations (4,5,6,7) we can conclude that the cohomology ring
of the Grassmann manifold is the following truncated polynomial ring for which
degxk = k.

H∗(G+
2 R

7; Z) ≈ Z[x2, x6]/〈x
3
2 − 2x6, x2

6〉.

One can also compute the ring structure of CP5 in a similar fashion using Serre
spectral sequence as in [BT82] to get

H∗(CP5; Z) = Z[x2]/〈x
6
2〉
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where x2 generates H2(CP5; Z) so that xk
2 generates H2k(CP5; Z) additively.

Once we compare these two ring structures, we decide that they are different,
and hence these two spaces G+

2 R7 and CP5 are not homotopy equivalent. But
that might not be very easy to show rigorously. That is why we choose another
way to see it.

As we know that if two manifolds are homotopy equivalent, then they have
the same homotopy groups. Exploiting this fact we can prove the following.

Theorem 2.1. G+
2 R7 is not homotopy equivalent to CP5.

Proof. We will be working on the classical Hopf fibration,

S
1 → S

11 −→ CP5.

The homotopy exact sequence of this fibration till 11-th level reads,

0 → π11 S
11 → π11 CP5 → 0 · · · 0 → π3 CP5 → 0 → 0 → π2 CP5 → π1 S

1 → 0

vanishing of the terms of which is provided by the vanishing of lower homo-
topy groups of the 11-sphere and higher homotopy groups of the circle. As a
consequence we obtain the homotopy groups of the projective space as,

π01234567891011(CP5) = (0, 0, Z, 0, 0, 0, 0, 0, 0, 0, 0, Z)

and the rest of the homotopy groups are determined by the 11-sphere’s

πk CP5 = πk S
11 for k ≥ 3.

Next, recording the homotopy groups of the Stiefel manifold from [Hat03],

π012345(V2R
7) = (0, 0, 0, 0, 0, Z2)

the homotopy exact sequence of the Grassmannian fibration (1) becomes the
following

0 → Z2 → π5 G+
2 R7 → 0 → 0 → π4 G+

2 R7 → 0 → 0 → π3 G+
2 R7 → 0 → 0 →

π2 G+
2 R7 → π1 S1 → 0 → π1 G+

2 R7 → 0.

This helps us to compute the homotopy groups up to fifth level as follows,

π012345(G
+
2 R

7) = (0, 0, Z, 0, 0, Z2). (8)

First four fundamental groups of CP5 and G+
2 R

7 are same but the fifth one is
different. So these two spaces are not homotopy equivalent.
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3 Odd dimesional case

In this section we will deal with the oriented real Grassmann manifold G+
2 R2k+1

for k ≥ 2. Similar calculations as in the previous section applies in the general
odd dimensional case as well. We start with the Stiefel manifolds which have
similar cohomology,

H∗(V2R
2k+1; Z) = Z[x2k, x4k−1]/〈x

2
2k , x2

4k−1, 2x2k, x2kx4k−1〉.

The cohomological Serre spectral sequence applied to the fibration

S
1 → V2R

2k+1 −→ G+
2 R

2k+1

has vanishing limit except for the entries E0,0
∞ = E4k,1

∞ = Z and E2k,0
∞ = Z2.

This forces the differentials di,1
2 in the second page to be isomorphism for all

i = −1 · · · 4k − 1 except for 2k − 2 which implies that our Grassmannian is
a cohomological projective space CP2k−1. Considering the limit of its image,

differential on E2k−2,1
∞ has to be multiplication by 2. Other relations similarly

applies for this odd dimensional general case as well as the previous section. As
a consequence we arrive at the following generalization.

Theorem 3.1. The cohomology ring of the Grassmann manifold is the following trun-
cated polynomial ring for which degxm = m.

H∗(G+
2 R

2k+1; Z) ≈ Z[x2, x2k]/〈x
k
2 − 2x2k, x2

2k〉.

This ring is different from that of the complex projective space which is

H∗(CP2k−1; Z) = Z[x2]/〈x
2k
2 〉.

On the other hand one can proceed in the homotopy groups direction as well.
The Stiefel manifold V2R2k+1 is 2k-2 connected and the 2k-1-th homotopy group
is Z2. Using this on the homotopy exact sequence of the circle bundle gives
the non-zero homotopy groups Z and Z2 at the levels 2 and 2k-1 of the Grass-
mannian. The rest of the homotopy groups are again trivial upto these levels.
Similarly using Hopf fibration homotopy exact sequence, the proof of the Theo-
rem 2.1 also suggest the following corollary.
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Corollary 3.2. The homotopy groups of the complex projective spaces are computed from
the spheres as follows.

πj CPn =







0 j < 2
Z j = 2
πj S2n+1 j > 2

So that first two nontrivial homotopy groups of CP2k−1 lie at the levels 2 and
4k-1 which distinguish the homotopy groups of two manifolds at the level 2k-1.

4 Even dimensional case

The even dimensional case varies widely from the odd one in our situation.
Major reason for diversity stems from the topology of Stiefel manifolds, coho-
mology of which can be extracted from [Hat02] as follows.

H∗(V2R
2k; Z) = Z[x2k−2, x2k−1]/〈x

2
2k−2, x2

2k−1, x2k−2x2k−1〉.

To be able to compute the cohomology of the Grassmannian we set up the co-
homological Serre spectral sequence for the fibration,

S
1 → V2R

2k −→ G+
2 R

2k.

The zeros coming from the Stiefel manifold in the limit with the top and bottom
cohomology provides zeros at the odd levels and Z’s at the even levels except
for the mid-level. See Table 3 for a low dimensional case.

Table 3: The second page of the cohomological Serre spectral sequence for G+
2 R

8.

1 Za 0 Zax2 0 Zax4 0 Zax6 ⊕ Zay6 0 Zax8 0 Zax10 0 Zax12

E2 0 Z1 0 Zx2 0 Zx4 0 Zx6 ⊕ Zy6 0 Zx8 0 Zx10 0 Zx12

0 1 2 3 4 5 6 7 8 9 10 11 12
2k − 2

❍
❍❍❥

We figure out that E2k−3,1
∞ = E2k−1,0

∞ = 0 from our computation of the second

page. Since Z = H2k−2(V; Z) = F0,2k−2 ⊃ F1,2k−3 ⊃ · · · imposing E0,2k−2
∞ =

8



· · · = E2k−3,1
∞ = 0 yields that Z = F1,2k−3 = · · · = F2k−2,0 last term of which is

equal to E2k−2,0
∞ .

Similarly we have Z = H2k−1(V; Z) = F0,2k−1 ⊃ F1,2k−2 ⊃ · · · , imposing

E0,2k−1
∞ = · · · = E2k−3,2

∞ = 0 yields that Z = F1,2k−3 = · · · = F2k−2,1. But we

know that F2k−1,0 = 0 from the limit, so that E2k−2,1
∞ = F2k−2,1/F2k−1,0 = Z. The

same argument is valid to prove E4k−4,1
∞ = Z since we know H4k−4(V; Z) = Z

and as an outside of territory limit E4k−3,0
∞ = 0. Combining these results we

obtain Table 4 as the limit of the spectral sequence.

Table 4: The limiting page of cohomological Serre spectral sequence for G+
2 R

8.

1 0 0 0 0 0 0 Z 0 0 0 0 0 Z

E∞ 0 Z 0 0 0 0 0 Z 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 10 11 12

Let H = H2k−2(G; Z) be the mid-level cohomology. Then since the differential

d2k−4,1
2 is injective, we have an isomorphic copy of Z inside H. Since the limit

E2k−2,0
∞ = Z we have an isomorphism H/d(Z) ≈ Z. This isomorphism will

reveal the result. First of all H contains no torsion. If there were a torsion
subgroup then the intersection T ∩ d(Z) has to be trivial, otherwise d(Z) should
contain nontrivial elements of finite order which is impossible. So the torsion T
remains in the quotient. This means that it is a subgroup T < Z of the quotient
which is free so T has to be zero. So H is free. It remains to determine its rank.
If rkH = 1 then the quotient has to be finite which is not the case. If the rkH > 2
then one can show that the quotient has rank greater than 1. So the rank must
be 2.

To be able to figure out the cohomology at the mid-level alternatively, we need
to proceed with auxiliary tools. Poincaré polynomial of the Grassmannian in the
even case is given by [GHV76, GMM95],

pG+
2 R2k(t) = 1 + t2 + t4 + · · ·+ t2k−4 + 2t2k−2 + t2k + · · ·+ t4k−4.

This shows that the free part has rank two. An application of the universal
coefficient theorem links the torsion to a lower level so that

T2k−2 = Ext(H2k−3(G; Z), Z) = T2k−3 = 0.

9



This finally completes the Table 3.

Analysing the product structure with similar techniques as in the previous
section does not yield the cohomology ring in the even case. We only get the
relations x2xl = xl+2 for l 6= 2k − 4, 2k − 2. To figure out the rest of the relations
we need to understand the intrinsic structure of the ring. In what follows E and
F will denote E2k

2 and F2k
2 , the canonical bundles over the Grassmann manifold

G+
2 R2k. They are obtained by taking the plane corresponding to a point and its

orthogonal complement(or quotient) to produce vector bundles of rank 2 and
2k-2 over our Grassmannian. We collect the related results of [SZ14] here as
follows.

Theorem 4.1. We have the following relations in the cohomology of the

Grassmann manifold G+
2 R2k.

(a) CPm

∫

i∗em =
CPm

∫

i∗em = (−1)m.

(b) CPk−1

∫

i∗eF = −
CPk−1

∫

i∗eF = 1.

(c) [CPm] ∈ H2m(G; Z) and em ∈ H2m(G; Z) are the generators

for m < k − 1.

(d) [G(2, m + 2)] ∈ H2m(G; Z) and em/2 ∈ H2m(G; Z) are the generators

for m > k − 1.

(e) [CPk−1], [CPk−1] ∈ H2k−2(G; Z) and ((−e)k−1 ± eF)/2 ∈ H2k−2(G; Z)

are the generators. They also correspond to each other by Poincaré duality.

Using these characteristic classes and integrals we will be able to figure out the
generators and relations in our Grassmannian. Now we are ready to compute
the cohomology ring.
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Theorem 4.2. The cohomology ring of the Grassmann manifold is the following trun-
cated polynomial ring for which degxm = m.

H∗(G+
2 R

2k; Z) ≈ Z[x2, x2k−2, y2k−2, x2k]/
〈 x2k−2 + y2k−2 + (−1)kxk−1

2 , 2x2
2k−2 − x2k−2

2

2x2x2k−2 + (−1)kxk
2 , 2y2

2k−2 − x2k−1
2

x2k−2y2k−2 , x2
2k , x2k−1

2

〉

.

Proof. The cohomology of the manifold G+
2 R2k is additively generated by the

elements,

1 , e , e2 · · · ek−2 , ((−e)k−1 ± eF)/2 , ek/2 · · · e2k−2/2.

Setting up the variables,

x2 := e (9)

2x2k−2 := (−e)k−1 + eF (10)

2y2k−2 := (−e)k−1 − eF (11)

2x2k := ek−1 (12)

Adding up the variables (10) and (11) we get the relation,

x2k−2 + y2k−2 = (−1)k−1xk−1
2 . (13)

This provides the only relation among all these three variables.

G+
2 R2k

∫

x2
2k−2 = 1

4 G+
2 R2k

∫

{e2k−2 + e2F + 2(−e)k−1}

= 1
4 {2 +

CPk−1−CPk−1

∫

eF + 2(−e)k−1}

= 1
4
{2 + (1 −−1) + 0} = 1.

by Theorem 4.1. Since the rank of the cohomology in this dimension is one, this
implies that

2x2
2k−2 = x2k−2

2 . (14)
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Multiplying the variables, we compute

G(2,k+2)

∫

x2x2k−2 = 1
2 G(2,k+2)

∫

{e((−e)k−1 + eF)}

= 1
2 G+

2 R2k

∫

{ek−2e((−e)k−1 + eF)}

= 1
2 G+

2 R2k

∫

{(−1)k−1e2k−2 + ek−1eF}

= (−1)k−1 + 1
2 G+

2 R2k

∫

{ek−1eF}

= (−1)k−1 + 1
2 CPk−1−CPk−1

∫

ek−1

= (−1)k−1

which is the coefficient of the generator at the 2k-th level, so that we get the
relation,

x2x2k−2 = (−1)k−1ek/2 = 2−1(−1)k−1xk
2. (15)

Square of the remaining variable can be decomposed by virtue of the relation
(13) and also combining with the relations (14,15) we have computed,

y2
2k−2 = ((−1)k−1xk−1

2 − x2k−2)
2

= x2k−2
2 + x2

2k−2 − 2(−1)k−1xk−1
2 x2k−2

= x2k−2
2 + x2k−2

2 /2 − 2(−1)k−1xk−2
2 2−1(−1)k−1xk

2

= x2k−1
2 /2 (16)
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Finally we will compute the product in the middle level.

G+
2 R2k

∫

x2k−2y2k−2 =
1

4 G+
2 R2k

∫

{e2k−2 − e2F}

=
1

2
−

1

4 CPk−1−CPk−1

∫

eF

= 0. (17)

The rest of the relations are produced by either vanishing above the dimension
or commutativity of forms.

Note that in the lowest dimension when k=2, it is a nice exercise for the reader
to establish an isomorphism with the cohomology of product of 2-spheres,

H∗(S2 × S
2) = Z[x2, y2]/〈x

2
2, y2

2, x2y2 − y2x2〉.

Considering the homotopy groups, the Stiefel manifold V2R2k is 2k-3 con-
nected and the 2k-2-nd homotopy group of it is Z. The homotopy exact se-
quence of the circle bundle gives the non-zero homotopy group Z at the levels
2 and 2k-2 of the Grassmannian. The rest of the groups are trivial upto these
levels. On the other hand the first two nontrivial homotopy groups of CP2k−2

are at the levels 2 and 4k-3 which distinguish the homotopy groups at the level
2k-2.
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