Seminar on Geometry
Fall 2013, ODTÜ, Ankara
Time / Location: Fridays 1:40 / M-215 |
Schedule of talks
TIME |
SPEAKER |
TITLE |
Sep 27
Fri, 2:40 |
Mustafa Kalafat
|
Lectures on the h-principle 1
|
Sep 30
Mon, 3:40 |
Ian Hambleton
(McMaster) |
Recognizing products of surfaces and 4-manifolds GT Seminar at İkeda Room |
Oct 3
Thu, 1:40 |
Buket Can Bahadır
|
Geometric PDEs 1 at Room M-130 |
Oct 4
Fri, 1:40 |
|
Lectures on the h-principle 2
|
3:40 |
Mesut Şahin
(Karatekin) |
Affine toric varieties, cones, lattices, semigroup rings, toric ideals
AG Seminar at İkeda Room |
Oct 11
Fri, 3:40 |
|
Fans, toric variety of a fan via gluing affine toric varieties, Orbit-Cone correspondence
AG Seminar at Bilkent
See also Conference
on Differential Geometry and Global Analysis at Leipzig
|
Oct 18
Fri, 1:40 |
|
Kurban Bayramı |
Oct 25
Fri, 2:00 |
|
Geometric PDEs 2 |
3:40 |
Mustafa Kalafat
AG Seminar at İkeda Room
|
Toric Varieties 3 |
Nov 1
Fri, 1:40 |
Ramazan Sarı
(Gaziosmanpaşa) |
Genelleştirilen Kenmotsu Manifoldları 1 |
3:40 |
AG Seminar at Bilkent |
Toric Varieties 4 |
Nov 7
Thu, 3:40 |
Yaşar Sözen
(Hacettepe) |
On some topological applications of Reidemeister torsion
General Seminar at İkeda |
Nov 8
Fri, 2:00 |
|
Geometric PDEs 3 |
3:40 |
AG Seminar at İkeda Room
|
Toric Varieties 5 |
Nov 11
Mon, 3:40 |
Mustafa Korkmaz |
On Linearity of the Mapping Class Groups İkeda'da |
Nov 14
Thu, 1:00 |
|
Geometric PDEs 4 at Room M-130 |
3:40 |
Cem Tezer |
Turkish contributions to the mathematical sciences
Genel Seminer, İkeda'da |
Nov 15
Fri, 1:40 |
|
Geometric PDEs 5 |
3:40 |
AG Seminar at Bilkent |
Toric Varieties 6 |
Nov 21
Thu, 1:40 |
|
Geometric PDEs 6 at Room M-130 |
Nov 22
Fri, 2:00 |
|
Geometric PDEs 7 |
3:40 |
|
Toric Varieties 7 |
Nov 25
Mon, 3:40 |
Sergey Finashin
GT Seminar |
Welschinger indices of lines on hypersurfaces and the
structures of Spin type |
Nov 27
Wed, 1:40 |
Emre Coşkun
AR Arithmetic Geometry Seminar |
Cubic Surfaces Room M-215 |
2:40 |
|
Geometric PDEs 8
M-215
|
4:00 |
Max Kronberg
(Oldenburg) |
Rational torsion on hyperelliptic curves of genus two
İkeda
|
Nov 28
Thu, 1:40 |
|
Geometric PDEs 9 at Room M-130 |
3:40 |
Meral Tosun
(Galatasaray) |
Simple elliptic singularities and Generalization of Slodowy slices
General Seminar
|
Nov 29
Fri, 2:00 |
|
Toric Varieties 8 |
3:40 |
Alex Degtyarev
AG Seminar
|
Resolutions of singularities, Viro’s patchworking, and tropical geometry |
Dec 2
Mon, 3:40 |
Kaoru Ono (Kyoto University Research IMS) |
General story of Floer theory for Lagrangian submanifolds
GT Seminar at İkeda |
Dec 4
Wed, 1:40 |
|
Geometric PDEs 9 at Room M-130 |
3:40 |
Kaoru Ono |
Lagrangian Floer thoery on compact toric manifolds
at İkeda |
Dec 5
Thu, 1:40 |
|
Geometric PDEs 10 at Room M-130 |
3:40 |
Kaoru Ono |
Non-displaceable Lagrangian submanifolds
General Seminar at İkeda |
Dec 6
Fri, 1:40 |
|
Toric Varieties 9 |
3:40 |
Mesut Şahin
AG Seminar at Bilkent
|
Projective Toric Varieties |
Dec 13
Fri, 2:00 |
|
Geometric PDEs 11 at Room M-130 |
3:40 |
Alex Degtyarev
AG Seminar
|
Viro's patchworking |
Dec 20
Fri, 1:40 |
Muazzez Şimşir (Hitit)
|
Calabi-Yau and special Lagrangian geometry 1 |
3:40 |
Mesut Şahin
AG Seminar at Bilkent
|
Coordinate Ring of a Toric Variety I |
Dec 26
Thu, 1:40 |
|
Geometric PDEs 13 at Room M-130 |
Dec 27
Fri, 2:00 |
|
Calabi-Yau and special Lagrangian geometry 2 |
3:40 |
AG Seminar
|
Coordinate Ring of a Toric Variety II |
Dec 31
Tue, 1:40 |
|
Geometric PDEs 14 at Room M-215 |
Jan 3
Fri, 2:00 |
|
Calabi-Yau and special Lagrangian geometry 3 |
3:40 |
|
Conformally Kähler Geometry 1
|
Jan 9
Thu, 1:40 |
|
Geometric PDEs 15 at Room M-130 |
Jan 10
Fri, 2:00 |
|
Geometric PDEs 16 |
3:40 |
|
Conformally Kähler Geometry 2 |
Jan 17
Fri, 1:40 |
|
AMS 2014 National Meeting at Baltimore |
Abstracts/Notlar
H-prensibi
H-prensibi 1:
PDEs and PDRs in differential geometry.
1. J-holomorphic curves
2. Seiberg-Witten (SW) equations 3. Yau's Monge-Ampere equations.
Jets, Ampleness.
H-prensibi 2: Tekrar. Örnekler: Immersion and
submersion relations and their coordinate ampleness.
Ampleness criterion for directed immersions.
H-prensibi 3: TBA
Lectures on Geometric Partial Differential Equations (PDEs)
Kısmi Diferansiyel Denklemler(PDE) modern diferansiyel geometride
sıklıkla kullanılmaktadır.
Shing-Tung Yau 1976'da klasik diferansiyel geometride
Monge-Ampere PDElerini etkin bir şekilde kullanarak çığır açmıştır.
Bunla kompleks manifoldlarda Einstein metriklerinin varlığını ispatlamış olup
üzerinde çalışılabilecek milyonlarca temel komplike örnek vermiştir.
Richard Hamilton
ise 1982'de başka tür bir PDE ile Poincare Conjectureunun özel hallerini ispatlayarak ayrı bir yönde ilerlemiştir.
Daha sonrasında Simon Donaldson
bu alanın lideridir.
PDElerin modern topolojiye de uygulamaları, neredeyse buna paralel
olarak, 1982de Simon Donaldson ve Mikhael Gromov ile başlar.
Gromov Cauchy-Riemann denklemlerinin çözümü olarak J-holomorphic
eğrileri simplektik manifoldların incelenmesinde etkin bir şekilde kullanır.
Topoloji uygulamaları Edward-Witten ile ve Donaldson'un Lefschetz liflenmelerini simplektik topolojide
kullanması ile devam eder.
Son flaş uygulamada ise
Grigori Perelman, Hamiltonun yöntemlerini
Cheeger-Gromov teori ile birleştirerek,
Thurston'un kurduğu Geometri ve Topolojideki ana bir problemi flaş bir şekilde çözerek noktayı koyar.
Bu 2. mertebeden eliptik kısmi diferansiyel denklem dersi olucaktır.
Gerekli altyapı da gözden geçirilmesi planlanmaktadır. Ana kaynak eser tabiki de
1. Lawrence C. Evans -
Partial differential equations.
2nd edition. Graduate Studies in Mathematics, 19.
AMS, Providence, RI, 2010.
olmalıdır. PDE teknikleri teorik ve de pratik yani particular solution techniques olarak
ikiye ayrılır. Biz ilkiyle ilgilenmekteyiz.
Bunun için de eserin Part-2 deki Section-5,6
ve de Appendix-CDE kısımlarını tarayacağız.
Ölçüm teorisi, Fonksiyonel analiz, Sobolev ve Hölder uzaylarından kalan alyapı eksikliklerini tamamlamak
için eserin Appendix-CDE kısmına ve de belki de
2. Robert Adams, John Fournier -
Sobolev spaces.
Second edition. Pure and Applied Mathematics 140.
Elsevier/Academic Press, Amsterdam, 2003.
eserine başvurulmalıdır. Bu konuda nihai referans kaynağımız ise şudur.
3. Gilbarg, Trudinger -
Elliptic partial differential equations of second order.
Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001. xiv+517 pp. ISBN: 3-540-41160-7.
Riemann manifoldlarına uygulamalar hakkında fikir edinmek için ise
4. Emmanuel Hebey -
Nonlinear analysis on manifolds:
Sobolev spaces and inequalities.
Courant Lecture Notes in Mathematics, 5. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999.
x+309 pp.
eserine müracaat edilebilir. Derslerin muhtevası aşağıdaki gibidir.
Geometric PDEs 1: Hölder, Sobolev spaces.
Geometric PDEs 2:
Sobolev spaces, weak derivatives. Properties.
Interrior and global approximations by smooth functions: Mollifiers.
Geometric PDEs 3:
Extensions of functions in Sobolev spaces. Riemannian measure.
Geometric PDEs 4:
Traces of functions in Sobolev spaces, i.e. correct way of extending a function to the boundary.
Geometric PDEs 5:
Examples. Heaviside function. Weak derivatives. Cantor function. Greens function, etc.
Geometric PDEs 6:
Sobolev inequalities: Gagliardo-Nirenberg-Sobolev Inequality
Geometric PDEs 7:
Morrey's Inequality. Proof.
Geometric PDEs 8:
Proof of Morrey's Inequality. General Sobolev inequalities
Geometric PDEs 9:
Compactness Theorems: Rellich-Kondrachov Theorem:
Compactness of W^k,p in L^q.
Geometric PDEs 10:
Proof of Rellich-Kondrachov Theorem: Application of Arzela-Ascoli thm.
Precompactness(Relatively compactness).
Geometric PDEs 11:
Applications and adaptations to the Riemannian Manifolds. Norms.
Geometric PDEs 12:
Sobolev spaces on Riemannian manifolds.
Geometric PDEs 13:
Sobolev embeddings on compact Riemannian manifolds. Volume condition on balls. Examples.
Gromov-Hausdorff convergence of metric spaces.
Geometric PDEs 14:
Gromov precompactness theorem.
Cheeger's finiteness type theorems. Sobolev embeddings for complete manifolds.
Geometric PDEs 15:
Green's functions on Riemannian manifolds.
Semester on Toric Varieties
Bu dönem, AG Semineri kapsamında torik varyetelerin geometrisi üzerinde
çalışacağız.
Cebirsel, simplektik ve diferansiyel geometride somut örnek olarak
kullanılmaları onları önemli kılan özelliklerden biridir.
Torik geometri anlatan pekçok eser arasından seçtiklerimizin bazıları şunlardır:
1. David Cox - CIMPA Lecture notes on toric varieties.
Şurdan
yüklenebilir. Özet ders notu.
2. Jean-Paul Brasselet - Geometry of toric varieties.
Algebraic geometry (Ankara, 1995), 53–87,
Lecture Notes in Pure and Appl. Math., 193, Dekker, New York, 1997.
3. Fulton - Toric Varieties.
Temel kitap.
4. D. Cox - What is a Toric Variety.
Giriş için faydalı olabilir.
Şurdan
indirilebilir.
5. Cox, Little, Schenck -
Toric varieties
AMS, GSM 124. Providence, RI, 2011. xxiv+841 pp. ISBN: 978-0-8218-4819-7.
Alandaki nihai kaynaklardan biri.
Kitabın web sitesi.
Şahin 1: We give the
classical definition of a toric variety involving the torus action and provide examples to illustrate it.
We introduce two important lattices that play important roles
in the theory of algebraic tori and demonstrate how they arise
naturally in the toric case. Finally, we introduce affine toric varieties
determined by strongly convex rational cones.
Şahin 2:
We introduce fans and the (abstract) toric variety determined by
a fan via gluing affine toric varieties defined by the cones in the fan.
We include some examples and conclude with the correspondence
between orbits of the torus action and the cones in the fan.
Toric Varieties 3:
We will revise the material on toric varieties with emphasis on examples and introduce some new concepts as time permits:
Examples. Fans to Manifolds. Tori. Hirzebruch surfaces.
Toric Varieties 4:
Blow ups. Resolution of Singularities.
Toric Varieties 5:
More on resolution of singularities. Weighted projective spaces and relation to Hirzebruch surfaces.
Torus action. Orbits.
Toric Varieties 6:
Examples on finding the orbits in complex projective space. (Weil) and Cartier divisors.
Principle divisors. Injections. Invariant divisors.
Toric Varieties 7:
Projective descriptions of Hirzebruch surfaces. C^* actions. Minitwistorspaces.
Toric Varieties 8:
Projective descriptions of Hirzebruch surfaces. C^* actions. Minitwistorspaces. 2.
Toric Varieties 9:
Projective descriptions of Hirzebruch surfaces. C^* actions. Minitwistorspaces. 3.
Toric Varieties 10:
Homology and cohomology. Poincare Homomorphism. Characteristic classes.
Alex :
In this very introductory talk I will try to discuss the interplay between
such concepts as embedded toric resolutions of singularities
via Newton polygons,
Viro’s combinatorial patchworking, and tropical geometry.
Şahin 3 :
We start with the definition of normal, very ample and smooth polytopes.
We next define the projective toric variety X_A determined by a finite set A of
lattice points.
When A is the lattice points of a polytope P we demonstrate that
X_A reflects the properties of P best if P is very ample.
We also define the normal fan of P and discuss the relation between the corresponding
"abstract" variety X_P and the embedded variety X_A.
Alex 2 : (Viro's patchworking)
This is a continuation of my previous talk.
After a brief introduction to Hilbert’s 16th problem,
I will try to outline the basic ideas underlying Viro’s method of
patchworking real algebraic varieties.
Şahin 4 : The aim of this talk is to introduce the
so called homogeneous coordinate ring of a normal toric variety.
We will see how Chow group of Weil divisors turn this ring into a graded ring.
Finally we show that every normal toric variety is a categorical quotient.
Şahin 5 :
After the promised example of "bad" quotient,
I will review the correspondence between subschemes of a normal toric variety and multigraded ideals of its homogeneous coordinate ring.
Calabi-Yau and special Lagrangian geometry
CY 1 :
Holonomy Groups: Berger's classification.
CY 2 :
First, we will discuss connections over vector bundles and parallel transport
to define the holonomy group of a bundle connection.
Then, Riemannian holonomy groups, which has stronger properties compared to
holonomy group of an arbitrary bunle connection, arise as a special case.
Furthermore, we will talk about reducible Riemannian manifolds
and symmetric spaces in order to understand Berger's classification of holonomy groups.
Sarı 1 :
Literatürde yeni bir kavram olan (2n+s)-boyutlu genelleştirilen Kenmotsu manifoldlar tanıtılacaktır.
Konunu temelini teşkil eden kontak manifoldlar ve çatılandırılan manifoldlar hakkında kısa bir giriş yapılıp
genelleştirilen Kenmotsu manifoldların temel özellikleri verilecektir. A.Vanlı ile ortak çalışmadır.
Sözen :
In the present talk, we will give the definition and basic facts about
the topological invariant, Reidemeister torsion.
We will also present
our topological applications of the torsion to Hitchin component and
pleated surfaces.
Kronberg :
For elliptic curves over the rational numbers the
possible torsion subgroups are known due to the famous result
by Mazur. In an earlier result Ogg found parametrized infinite
families for all possible torsion subgroups. For hyperelliptic
curves nearly nothing about the rational torsion structure is
known. There are some resluts by Cassels, Elkies, Flynn and
Leprévost who give single curves with large torsion. We will
show the construction of families of hyperelliptic curves with
p-torsion for small primes p. Furthermore we will give an
overview over the attempts that did not work.
M.Tosun :
Any simple elliptic singularity of type ~D_5 can be obtained by taking
the intersection of the nilpotent variety and the 4-dimensional "good slices"
in the semi-simple Lie algebra sl(2,C) + sl(2,C). We describe these new slices purely by the structure of the Lie algebra.
We also construct the semi-universal deformation
spaces of ~D_5-singularities by using the 4-dimensional "good slices".
Ono 1 : Kaoru Ono is visiting the department.
He will give a series of talks (more or less independent of each other):
Monday, Wednesday and Thursday. All talks will be at 15:40 in the Ikeda Seminar Room.
Monday:
In the middle 1980's, Andreas Floer initiated what is now called Floer theory for Lagrangian submanifolds.
After explaining the idea of Floer theory for Lagrangian, I would like to present a general framework of the theory.
Based on joint works with K. Fukaya, Y.-G. Oh and H. Ohta)
Ono 2 : Wednesday:
For a compact Kahler toric manifolds, we have a family of Lagrangian
tori in it.
Namely, the inverse images of points in the interior of the moment polytope.
I would like to explain Floer theory for these Lagrangian tori and discuss some of its implications. This is based on joint works with K. Fukaya, Y.-G. Oh and H. Ohta.
Ono 3 : Thursday:
Lagrangian submanifolds are important objects in symplectic geometry.
They are not so easily displaced by Hamiltonian isotopies. Sometimes, no
Hamiltonian isotopy can displace a Lagrangian submanifold. Such a
Lagrangian manifold is called non-displaceable. I would like to discuss some criteria for non-displaceablity with examples.
ConfK 1 :
We show that a compact complex surface which admits a conformally Kähler metric g
of positive orthogonal holomorphic bisectional
curvature is biholomorphic to the complex projective plane.
In addition, if g is a Hermitian metric which is Einstein,
then the biholomorphism can be chosen to be an isometry via which g becomes a multiple
of the Fubini-Study metric.
This page is maintained by Mustafa
Kalafat
Does the page seem familiar...
Most of these activities and the website is supported by Tübitak